BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34832759)

  • 21. Microfluidic Chips for Life Sciences-A Comparison of Low Entry Manufacturing Technologies.
    Grösche M; Zoheir AE; Stegmaier J; Mikut R; Mager D; Korvink JG; Rabe KS; Niemeyer CM
    Small; 2019 Aug; 15(35):e1901956. PubMed ID: 31305015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Printing of Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: A Status Review.
    Pervaiz S; Qureshi TA; Kashwani G; Kannan S
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advanced Composite Materials Utilized in FDM/FFF 3D Printing Manufacturing Processes: The Case of Filled Filaments.
    Kantaros A; Soulis E; Petrescu FIT; Ganetsos T
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery.
    Tan DK; Maniruzzaman M; Nokhodchi A
    Pharmaceutics; 2018 Oct; 10(4):. PubMed ID: 30356002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices.
    Kotz F; Risch P; Helmer D; Rapp BE
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties-An Overview.
    Acierno D; Patti A
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization.
    Ćatić N; Wells L; Al Nahas K; Smith M; Jing Q; Keyser UF; Cama J; Kar-Narayan S
    Appl Mater Today; 2020 Jun; 19():100618. PubMed ID: 33521242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research on Integrated 3D Printing of Microfluidic Chips.
    Wu C; Sun J; Yin B
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile Fabrication of Microfluidic Chips for 3D Hydrodynamic Focusing and Wet Spinning of Polymeric Fibers.
    Gursoy A; Iranshahi K; Wei K; Tello A; Armagan E; Boesel LF; Sorin F; Rossi RM; Defraeye T; Toncelli C
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32164361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems.
    Rehmani MAA; Jaywant SA; Arif KM
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel Three-Dimensional-Printing Strategy Based on Dynamic Urea Bonds for Isotropy and Mechanical Robustness of Large-Scale Printed Products.
    Wang J; Hu S; Yang B; Jin G; Zhou X; Lin X; Wang R; Lu Y; Zhang L
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1994-2005. PubMed ID: 34963290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Progress of Polymer-Based Dielectric Composites Prepared Using Fused Deposition Modeling 3D Printing.
    Hu X; Sansi Seukep AM; Senthooran V; Wu L; Wang L; Zhang C; Wang J
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Typography-Like 3D-Printed Templates for the Lithography-Free Fabrication of Microfluidic Chips.
    Su W; Li Y; Zhang L; Sun J; Liu S; Ding X
    SLAS Technol; 2020 Feb; 25(1):82-87. PubMed ID: 31381466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary.
    Lan D; Shang Y; Su H; Liang M; Liu Y; Li H; Feng Q; Cao X; Dong H
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4971-4981. PubMed ID: 34503336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shrinky-Dink microfluidics: 3D polystyrene chips.
    Chen CS; Breslauer DN; Luna JI; Grimes A; Chin WC; Lee LP; Khine M
    Lab Chip; 2008 Apr; 8(4):622-4. PubMed ID: 18369519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-Chip Chemical Synthesis Using One-Step 3D Printed Polyperfluoropolyether.
    Goralczyk A; Mayoussi F; Sanjaya M; Corredor SF; Bhagwat S; Song Q; Schwenteck S; Warmbold A; Pezeshkpour P; Rapp BE
    Chem Ing Tech; 2022 Jul; 94(7):975-982. PubMed ID: 35915768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry.
    Duarte LC; Pereira I; Maciel LIL; Vaz BG; Coltro WKT
    Anal Chim Acta; 2022 Jan; 1190():339252. PubMed ID: 34857139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.