These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 34832778)
1. Modeling and Compensation of Dynamic Hysteresis with Force-Voltage Coupling for Piezoelectric Actuators. Wang W; Wang J; Wang R; Chen Z; Han F; Lu K; Wang C; Xu Z; Ju B Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832778 [TBL] [Abstract][Full Text] [Related]
2. Modeling and Compensation for Asymmetrical and Dynamic Hysteresis of Piezoelectric Actuators Using a Dynamic Delay Prandtl-Ishlinskii Model. Wang W; Han F; Chen Z; Wang R; Wang C; Lu K; Wang J; Ju B Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467202 [TBL] [Abstract][Full Text] [Related]
3. Research on Asymmetric Hysteresis Modeling and Compensation of Piezoelectric Actuators with PMPI Model. Wang W; Wang J; Chen Z; Wang R; Lu K; Sang Z; Ju B Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32235522 [TBL] [Abstract][Full Text] [Related]
4. Modeling and Inverse Compensation of Cross-Coupling Hysteresis in Piezoceramics under Multi-Input. Zhou X; Zhang L; Yang Z; Sun L Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467768 [TBL] [Abstract][Full Text] [Related]
5. Modeling and compensation of hysteresis in piezoelectric actuators. Yu Z; Wu Y; Fang Z; Sun H Heliyon; 2020 May; 6(5):e03999. PubMed ID: 32509984 [TBL] [Abstract][Full Text] [Related]
6. A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. Jiang H; Ji H; Qiu J; Chen Y IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1200-10. PubMed ID: 20442032 [TBL] [Abstract][Full Text] [Related]
7. A Digitized Representation of the Modified Prandtl-Ishlinskii Hysteresis Model for Modeling and Compensating Piezoelectric Actuator Hysteresis. Zhou C; Feng C; Aye YN; Ang WT Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442563 [TBL] [Abstract][Full Text] [Related]
8. Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model. An D; Li H; Xu Y; Zhang L Micromachines (Basel); 2018 Jan; 9(2):. PubMed ID: 30393320 [TBL] [Abstract][Full Text] [Related]
9. Hysteresis Characteristics and MPI Compensation of Two-Dimensional Piezoelectric Positioning Stage. Wang W; Zhang J; Xu M; Chen G Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208445 [TBL] [Abstract][Full Text] [Related]
10. Compensation of Hysteresis in the Piezoelectric Nanopositioning Stage under Reciprocating Linear Voltage Based on a Mark-Segmented PI Model. An D; Yang Y; Xu Y; Shao M; Shi J; Yue G Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31861513 [TBL] [Abstract][Full Text] [Related]
11. Adaptive compound control based on generalized Bouc-Wen inverse hysteresis modeling in piezoelectric actuators. Zhang Q; Gao Y; Li Q; Yin D Rev Sci Instrum; 2021 Nov; 92(11):115004. PubMed ID: 34852500 [TBL] [Abstract][Full Text] [Related]
12. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. Gu GY; Yang MJ; Zhu LM Rev Sci Instrum; 2012 Jun; 83(6):065106. PubMed ID: 22755661 [TBL] [Abstract][Full Text] [Related]
13. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system. Rahman MA; Al Mamun A; Yao K Rev Sci Instrum; 2015 Aug; 86(8):085002. PubMed ID: 26329224 [TBL] [Abstract][Full Text] [Related]
14. Bidirectional Drive with Inhibited Hysteresis for Piezoelectric Actuators. Huang W; Lian J; An D; Chen M; Lei Y Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214447 [TBL] [Abstract][Full Text] [Related]
15. Grasping force hysteresis compensation of a piezoelectric-actuated wire clamp with a modified inverse Prandtl-Ishlinskii model. Liang C; Wang F; Tian Y; Zhao X; Zhang D Rev Sci Instrum; 2017 Nov; 88(11):115101. PubMed ID: 29195342 [TBL] [Abstract][Full Text] [Related]
16. Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map. Long Z; Wang R; Fang J; Dai X; Li Z Rev Sci Instrum; 2017 Jul; 88(7):075003. PubMed ID: 28764489 [TBL] [Abstract][Full Text] [Related]
17. Implementation and analysis of an innovative digital charge amplifier for hysteresis reduction in piezoelectric stack actuators. Bazghaleh M; Grainger S; Cazzolato B; Lu TF; Oskouei R Rev Sci Instrum; 2014 Apr; 85(4):045005. PubMed ID: 24784651 [TBL] [Abstract][Full Text] [Related]
18. A generalized Prandtl-Ishlinskii model for characterizing the rate-independent and rate-dependent hysteresis of piezoelectric actuators. Gan J; Zhang X; Wu H Rev Sci Instrum; 2016 Mar; 87(3):035002. PubMed ID: 27036808 [TBL] [Abstract][Full Text] [Related]
19. Compensation Method for the Nonlinear Characteristics with Starting Error of a Piezoelectric Actuator in Open-Loop Controls Based on the DSPI Model. An D; Li J; Li S; Shao M; Wang W; Wang C; Yang Y Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37420975 [TBL] [Abstract][Full Text] [Related]
20. A Modified Prandtl-Ishlinskii Hysteresis Model for Modeling and Compensating Asymmetric Hysteresis of Piezo-Actuated Flexure-Based Systems. Zhou C; Yuan M; Feng C; Ang WT Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]