These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34832837)

  • 1. A Review of the High-Power All-Solid-State Single-Frequency Continuous-Wave Laser.
    Peng W; Jin P; Li F; Su J; Lu H; Peng K
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intensity noise suppression of a high-power single-frequency CW laser by controlling the stimulated emission rate.
    Guo Y; Lu H; Peng W; Su J; Peng K
    Opt Lett; 2019 Dec; 44(24):6033-6036. PubMed ID: 32628212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-mode-matching compact low-noise all-solid-state continuous wave single-frequency laser with output power of 140 W.
    Wei Y; Peng W; Li J; Jin P; Su J; Lu H; Peng K
    Opt Lett; 2023 Feb; 48(3):676-679. PubMed ID: 36723561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity noise manipulation of a single-frequency laser with high output power by intracavity nonlinear loss.
    Lu H; Guo Y; Peng K
    Opt Lett; 2015 Nov; 40(22):5196-9. PubMed ID: 26565833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realization of a 101  W single-frequency continuous wave all-solid-state 1064  nm laser by means of mode self-reproduction.
    Guo Y; Xu M; Peng W; Su J; Lu H; Peng K
    Opt Lett; 2018 Dec; 43(24):6017-6020. PubMed ID: 30547997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realization of CW single-frequency tunable Ti:sapphire laser with immunity to the noise of the pump source.
    Song J; Qin J; Jin P; Chen Y; Su J; Lu H
    Opt Express; 2023 Jan; 31(1):745-754. PubMed ID: 36607007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unidirectional single-frequency operation of a continuous-wave Alexandrite ring laser with wavelength tunability.
    Sheng X; Tawy G; Sathian J; Minassian A; Damzen MJ
    Opt Express; 2018 Nov; 26(24):31129-31136. PubMed ID: 30650703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-power tunable low-noise coherent source at 1.06  μm based on a surface-emitting semiconductor laser.
    Chomet B; Zhao J; Ferrieres L; Myara M; Guiraud G; Beaudoin G; Lecocq V; Sagnes I; Traynor N; Santarelli G; Denet S; Garnache A
    Appl Opt; 2018 Jun; 57(18):5224-5229. PubMed ID: 30117985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-power, efficient, low-noise, continuous-wave all-solid-state Ti:sapphire laser.
    Tsunekane M; Taguchi N; Inaba H
    Opt Lett; 1996 Dec; 21(23):1912-4. PubMed ID: 19881843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-solid-state tunable continuous-wave ultraviolet source with high spectral purity and frequency stability.
    Schnitzler H; Fröhlich U; Boley TK; Clemen AE; Mlynek J; Peters A; Schiller S
    Appl Opt; 2002 Nov; 41(33):7000-5. PubMed ID: 12463244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scheme for improving laser stability via feedback control of intracavity nonlinear loss.
    Jin P; Lu H; Su J; Peng K
    Appl Opt; 2016 May; 55(13):3478-82. PubMed ID: 27140359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the pump scheme on the output power and the intensity noise of a single-frequency continuous-wave laser.
    Guo Y; Peng W; Su J; Lu H; Peng K
    Opt Express; 2020 Feb; 28(4):5866-5874. PubMed ID: 32121801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-power single-frequency continuous-wave 355 nm UV laser via a frequency-correlated dual-wavelength laser.
    Wei J; Wang Y; Yin R; Su J; Lu H
    Opt Lett; 2024 Jul; 49(14):4014-4017. PubMed ID: 39008765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-brightness scalable continuous-wave single-mode photonic-crystal laser.
    Yoshida M; Katsuno S; Inoue T; Gelleta J; Izumi K; De Zoysa M; Ishizaki K; Noda S
    Nature; 2023 Jun; 618(7966):727-732. PubMed ID: 37316656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT.
    Kumar SC; Samanta GK; Ebrahim-Zadeh M
    Opt Express; 2009 Aug; 17(16):13711-26. PubMed ID: 19654779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser.
    Yang C; Guan X; Zhao Q; Wu B; Feng Z; Gan J; Cheng H; Peng M; Yang Z; Xu S
    Opt Express; 2017 Jun; 25(12):13324-13331. PubMed ID: 28788868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers.
    Kwee P; Willke B
    Appl Opt; 2008 Nov; 47(32):6022-32. PubMed ID: 19002226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and testing of low intensity laser biostimulator.
    Valchinov ES; Pallikarakis NE
    Biomed Eng Online; 2005 Jan; 4():5. PubMed ID: 15649327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength tuning of solid-state continuous-wave single frequency 1.5 µm laser by manipulating net gain spectra.
    Yao Z; Li Y; Liu K; Feng J; Zhang K
    Opt Express; 2022 Nov; 30(24):44085-44094. PubMed ID: 36523091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analyses of an injection-locked diode-pumped rubidium vapor laser.
    Cai H; Gao C; Liu X; Wang S; Yu H; Rong K; An G; Han J; Zhang W; Wang H; Wang Y
    Opt Express; 2018 Apr; 26(7):8503-8514. PubMed ID: 29715816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.