BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34832959)

  • 1. Design, Synthesis, In Vitro Anticancer Evaluation and Molecular Modelling Studies of 3,4,5-Trimethoxyphenyl-Based Derivatives as Dual EGFR/HDAC Hybrid Inhibitors.
    Ibrahim TS; Malebari AM; Mohamed MFA
    Pharmaceuticals (Basel); 2021 Nov; 14(11):. PubMed ID: 34832959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of cyanopyridine in design and synthesis of first-in-class anticancer dual acting PIM-1 kinase/HDAC inhibitors.
    Bass AKA; Nageeb EM; El-Zoghbi MS; Mohamed MFA; Badr M; Abuo-Rahma GEA
    Bioorg Chem; 2022 Feb; 119():105564. PubMed ID: 34959179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, synthesis, biological assessment and molecular modeling studies of novel imidazothiazole-thiazolidinone hybrids as potential anticancer and anti-inflammatory agents.
    Kamboj P; Anjali ; Imtiyaz K; Rizvi MA; Nath V; Kumar V; Husain A; Amir M
    Sci Rep; 2024 Apr; 14(1):8457. PubMed ID: 38605072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel quinoxaline derivatives as dual EGFR and COX-2 inhibitors: synthesis, molecular docking and biological evaluation as potential anticancer and anti-inflammatory agents.
    Ahmed EA; Mohamed MFA; Omran OA
    RSC Adv; 2022 Sep; 12(39):25204-25216. PubMed ID: 36199335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules.
    Abou-Zied HA; Youssif BGM; Mohamed MFA; Hayallah AM; Abdel-Aziz M
    Bioorg Chem; 2019 Aug; 89():102997. PubMed ID: 31136902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, Synthesis and Biological Evaluation of New HDAC1 and HDAC2 Inhibitors Endowed with Ligustrazine as a Novel Cap Moiety.
    Al-Sanea MM; Gotina L; Mohamed MF; Grace Thomas Parambi D; Gomaa HAM; Mathew B; Youssif BGM; Alharbi KS; Elsayed ZM; Abdelgawad MA; Eldehna WM
    Drug Des Devel Ther; 2020; 14():497-508. PubMed ID: 32103894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, Synthesis, biological Evaluation, and molecular docking studies of novel Pyrazolo[3,4-d]Pyrimidine derivative scaffolds as potent EGFR inhibitors and cell apoptosis inducers.
    Sherbiny FF; Bayoumi AH; El-Morsy AM; Sobhy M; Hagras M
    Bioorg Chem; 2021 Nov; 116():105325. PubMed ID: 34507234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and biological evaluation of 2-styrylquinolines as antitumour agents and EGFR kinase inhibitors: molecular docking study.
    El-Sayed MA; El-Husseiny WM; Abdel-Aziz NI; El-Azab AS; Abuelizz HA; Abdel-Aziz AA
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):199-209. PubMed ID: 29251017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Synthesis and Biological Evaluation of Novel N-hydroxyheptanamides Incorporating 6-hydroxy-2-methylquinazolin-4(3H)-ones as Histone Deacetylase Inhibitors and Cytotoxic Agents.
    Minh NV; Thanh NT; Lien HT; Anh DTP; Cuong HD; Nam NH; Hai PT; Minh-Ngoc L; Le-Thi-Thu H; Chinh LV; Vu TK
    Anticancer Agents Med Chem; 2019; 19(12):1543-1557. PubMed ID: 31267876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New thieno[3,2-d]pyrimidine-based derivatives: Design, synthesis and biological evaluation as antiproliferative agents, EGFR and ARO inhibitors inducing apoptosis in breast cancer cells.
    Farghaly AM; AboulWafa OM; Baghdadi HH; Abd El Razik HA; Sedra SMY; Shamaa MM
    Bioorg Chem; 2021 Oct; 115():105208. PubMed ID: 34365057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, Synthesis, and Biological Evaluation of 2-Anilino-4-Triazolpyrimidine Derivatives as CDK4/HDACs Inhibitors.
    Wang S; Han S; Cheng W; Miao R; Li S; Tian X; Kan Q
    Drug Des Devel Ther; 2022; 16():1083-1097. PubMed ID: 35431540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, docking studies and biological evaluation of novel chalcone derivatives as potential histone deacetylase inhibitors.
    Mohamed MFA; Shaykoon MSA; Abdelrahman MH; Elsadek BEM; Aboraia AS; Abuo-Rahma GEAA
    Bioorg Chem; 2017 Jun; 72():32-41. PubMed ID: 28346873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Suberoylanilide Hydroxamic Acid Analogs Inhibit Angiogenesis and Induce Apoptosis in Breast Cancer Cells.
    Moku G; Vangala S; Yakati V; Gali CC; Saha S; Madamsetty VS; Vyas A
    Anticancer Agents Med Chem; 2022; 22(5):914-925. PubMed ID: 34488592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Conjugated Quinazolinone-Based Hydroxamic Acids: Design, Synthesis and Biological Evaluation.
    Vu TK; Thanh NT; Minh NV; Linh NH; Thao NTP; Nguyen TTB; Hien DT; Chinh LV; Duc TH; Anh LD; Hai PT
    Med Chem; 2021; 17(7):732-749. PubMed ID: 32310052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Synthesis of New Quinoxaline Derivatives as Potential Histone Deacetylase Inhibitors Targeting Hepatocellular Carcinoma:
    Ma C; Taghour MS; Belal A; Mehany ABM; Mostafa N; Nabeeh A; Eissa IH; Al-Karmalawy AA
    Front Chem; 2021; 9():725135. PubMed ID: 34631658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of New Uracil and Thiouracil Derivatives as Potential HDAC Inhibitors.
    Elbatrawy OR; Hagras M; El Deeb MA; Agili F; Hegazy M; El-Husseiny AA; Mokhtar MM; Elkhawaga SY; Eissa IH; El-Kalyoubi S
    Pharmaceuticals (Basel); 2023 Jul; 16(7):. PubMed ID: 37513878
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis of Novel Thieno[2,3-d]pyrimidine Derivatives and Evaluation of Their Cytotoxicity and EGFR Inhibitory Activity.
    Adly ME; Gedawy EM; El-Malah AA; El-Telbany FA
    Anticancer Agents Med Chem; 2018; 18(5):747-756. PubMed ID: 29366427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis and anticancer activity of novel valproic acid conjugates with improved histone deacetylase (HDAC) inhibitory activity.
    Ibrahim TS; Sheha TA; Abo-Dya NE; AlAwadh MA; Alhakamy NA; Abdel-Samii ZK; Panda SS; Abuo-Rahma GEA; Mohamed MFA
    Bioorg Chem; 2020 Jun; 99():103797. PubMed ID: 32247939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, synthesis and evaluation of novel indirubin-based N-hydroxybenzamides, N-hydroxypropenamides and N-hydroxyheptanamides as histone deacetylase inhibitors and antitumor agents.
    Anh DT; Hai PT; Dung DTM; Dung PTP; Huong LT; Park EJ; Jun HW; Kang JS; Kwon JH; Tung TT; Han SB; Nam NH
    Bioorg Med Chem Lett; 2020 Nov; 30(22):127537. PubMed ID: 32916298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel pyrazole-based COX-2 inhibitors as potential anticancer agents: Design, synthesis, cytotoxic effect against resistant cancer cells, cell cycle arrest, apoptosis induction and dual EGFR/Topo-1 inhibition.
    Halim PA; Sharkawi SMZ; Labib MB
    Bioorg Chem; 2023 Feb; 131():106273. PubMed ID: 36444790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.