These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34833067)

  • 1. Protein-Based Systems for Translational Regulation of Synthetic mRNAs in Mammalian Cells.
    Nakanishi H
    Life (Basel); 2021 Nov; 11(11):. PubMed ID: 34833067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-controllable RNA-protein devices for translational regulation of synthetic mRNAs in mammalian cells.
    Nakanishi H; Yoshii T; Kawasaki S; Hayashi K; Tsutsui K; Oki C; Tsukiji S; Saito H
    Cell Chem Biol; 2021 May; 28(5):662-674.e5. PubMed ID: 33508227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caliciviral protein-based artificial translational activator for mammalian gene circuits with RNA-only delivery.
    Nakanishi H; Saito H
    Nat Commun; 2020 Mar; 11(1):1297. PubMed ID: 32157083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian gene circuits with biomolecule-responsive RNA devices.
    Nakanishi H; Saito H
    Curr Opin Chem Biol; 2019 Oct; 52():16-22. PubMed ID: 31129468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular basis of coupling between poly(A)-tail length and translational efficiency.
    Xiang K; Bartel DP
    Elife; 2021 Jul; 10():. PubMed ID: 34213414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A protocol to construct RNA-protein devices for photochemical translational regulation of synthetic mRNAs in mammalian cells.
    Nakanishi H; Yoshii T; Tsukiji S; Saito H
    STAR Protoc; 2022 Jun; 3(2):101451. PubMed ID: 35707682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic RNA-based logic computation in mammalian cells.
    Matsuura S; Ono H; Kawasaki S; Kuang Y; Fujita Y; Saito H
    Nat Commun; 2018 Nov; 9(1):4847. PubMed ID: 30451868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile Design of Intracellular Protein-Responsive Translational Regulation System for Synthetic mRNA.
    Nakanishi H; Saito H; Itaka K
    ACS Synth Biol; 2022 Mar; 11(3):1077-1085. PubMed ID: 35188747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian synthetic biology: engineering of sophisticated gene networks.
    Greber D; Fussenegger M
    J Biotechnol; 2007 Jul; 130(4):329-45. PubMed ID: 17602777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthogonal Protein-Responsive mRNA Switches for Mammalian Synthetic Biology.
    Ono H; Kawasaki S; Saito H
    ACS Synth Biol; 2020 Jan; 9(1):169-174. PubMed ID: 31765565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. News from Mars: Two-Tier Paradox, Intracellular PCR, Chimeric Junction Shift, Dark Matter mRNA and Other Remarkable Features of Mammalian RNA-Dependent mRNA Amplification. Implications for Alzheimer's Disease, RNA-Based Vaccines and mRNA Therapeutics.
    Volloch V; Rits-Volloch S
    Ann Integr Mol Med; 2021; 2():131-173. PubMed ID: 33942036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic mRNA-Based Systems in Mammalian Cells.
    Ohno H; Akamine S; Saito H
    Adv Biosyst; 2020 May; 4(5):e1900247. PubMed ID: 32402126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering bacterial translation initiation - Do we have all the tools we need?
    Vigar JRJ; Wieden HJ
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3060-3069. PubMed ID: 28315412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development.
    Sheets MD; Fox CA; Dowdle ME; Blaser SI; Chung A; Park S
    Adv Exp Med Biol; 2017; 953():49-82. PubMed ID: 27975270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner.
    Miloslavski R; Cohen E; Avraham A; Iluz Y; Hayouka Z; Kasir J; Mudhasani R; Jones SN; Cybulski N; Rüegg MA; Larsson O; Gandin V; Rajakumar A; Topisirovic I; Meyuhas O
    J Mol Cell Biol; 2014 Jun; 6(3):255-66. PubMed ID: 24627160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules.
    Ohashi R; Shiina N
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 31978946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reovirus S4 gene 3' nontranslated region contains a translational operator sequence.
    Mochow-Grundy M; Dermody TS
    J Virol; 2001 Jul; 75(14):6517-26. PubMed ID: 11413319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Translation Initiation Regulation Mechanism in Escherichia coli ptrB Mediated by a 5'-Terminal AUG.
    Beck HJ; Janssen GR
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28484048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The herpes simplex virus 1 virion host shutoff protein enhances translation of viral late mRNAs by preventing mRNA overload.
    Dauber B; Saffran HA; Smiley JR
    J Virol; 2014 Sep; 88(17):9624-32. PubMed ID: 24920814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertebrate mRNAs with a 5'-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element.
    Avni D; Shama S; Loreni F; Meyuhas O
    Mol Cell Biol; 1994 Jun; 14(6):3822-33. PubMed ID: 8196625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.