These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 34833155)
1. Detection of Heo T; Kang H; Choi S; Kim J Life (Basel); 2021 Nov; 11(11):. PubMed ID: 34833155 [TBL] [Abstract][Full Text] [Related]
2. Toehold switch based biosensors for sensing the highly trafficked rosewood Soudier P; Rodriguez Pinzon D; Reif-Trauttmansdorff T; Hijazi H; Cherrière M; Goncalves Pereira C; Blaise D; Pispisa M; Saint-Julien A; Hamlet W; Nguevo M; Gomes E; Belkhelfa S; Niarakis A; Kushwaha M; Grigoras I Synth Syst Biotechnol; 2022 Jun; 7(2):791-801. PubMed ID: 35415278 [TBL] [Abstract][Full Text] [Related]
3. Toehold switches: de-novo-designed regulators of gene expression. Green AA; Silver PA; Collins JJ; Yin P Cell; 2014 Nov; 159(4):925-39. PubMed ID: 25417166 [TBL] [Abstract][Full Text] [Related]
4. Homogeneous and Universal Detection of Various Targets with a Dual-Step Transduced Toehold Switch Sensor. Li H; Tang Y; Li B Chembiochem; 2020 May; 21(10):1418-1422. PubMed ID: 31913537 [TBL] [Abstract][Full Text] [Related]
6. Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches. Hwang Y; Kim SG; Jang S; Kim J; Jung GY J Biol Eng; 2021 Mar; 15(1):11. PubMed ID: 33741029 [TBL] [Abstract][Full Text] [Related]
7. RNA-Based Sensor Systems for Affordable Diagnostics in the Age of Pandemics. Koksaldi IC; Park D; Atilla A; Kang H; Kim J; Seker UOS ACS Synth Biol; 2024 Apr; 13(4):1026-1037. PubMed ID: 38588603 [TBL] [Abstract][Full Text] [Related]
8. End-to-end computational approach to the design of RNA biosensors for detecting miRNA biomarkers of cervical cancer. Baabu PRS; Srinivasan S; Nagarajan S; Muthamilselvan S; Selvi T; Suresh RR; Palaniappan A Synth Syst Biotechnol; 2022 Jun; 7(2):802-814. PubMed ID: 35475253 [TBL] [Abstract][Full Text] [Related]
9. Decentralizing Cell-Free RNA Sensing With the Use of Low-Cost Cell Extracts. Arce A; Guzman Chavez F; Gandini C; Puig J; Matute T; Haseloff J; Dalchau N; Molloy J; Pardee K; Federici F Front Bioeng Biotechnol; 2021; 9():727584. PubMed ID: 34497801 [TBL] [Abstract][Full Text] [Related]
11. A comprehensive web tool for toehold switch design. To AC; Chu DH; Wang AR; Li FC; Chiu AW; Gao DY; Choi CHJ; Kong SK; Chan TF; Chan KM; Yip KY Bioinformatics; 2018 Aug; 34(16):2862-2864. PubMed ID: 29648573 [TBL] [Abstract][Full Text] [Related]
12. Detection and differentiation of respiratory syncytial virus subgroups A and B with colorimetric toehold switch sensors in a paper-based cell-free system. Cao M; Sun Q; Zhang X; Ma Y; Wang J Biosens Bioelectron; 2021 Jun; 182():113173. PubMed ID: 33773383 [TBL] [Abstract][Full Text] [Related]
13. Detection of MicroRNAs Using Synthetic Toehold Switch in Mammalian Cells. Zhao Y; Poudel P; Wang S Methods Mol Biol; 2024; 2774():243-258. PubMed ID: 38441769 [TBL] [Abstract][Full Text] [Related]
14. "Toehold Switches; a foothold for Synthetic Biology". Yarra SS; Ashok G; Mohan U Biotechnol Bioeng; 2023 Apr; 120(4):932-952. PubMed ID: 36527224 [TBL] [Abstract][Full Text] [Related]
15. A Novel Synthetic Toehold Switch for MicroRNA Detection in Mammalian Cells. Wang S; Emery NJ; Liu AP ACS Synth Biol; 2019 May; 8(5):1079-1088. PubMed ID: 31039307 [TBL] [Abstract][Full Text] [Related]
16. Predictable control of RNA lifetime using engineered degradation-tuning RNAs. Zhang Q; Ma D; Wu F; Standage-Beier K; Chen X; Wu K; Green AA; Wang X Nat Chem Biol; 2021 Jul; 17(7):828-836. PubMed ID: 34155402 [TBL] [Abstract][Full Text] [Related]
17. Design of RNA-Based Translational Repressors. Hong S; Park D; Chaudhary S; McCutcheon G; Green AA; Kim J Methods Mol Biol; 2022; 2518():49-64. PubMed ID: 35666438 [TBL] [Abstract][Full Text] [Related]
18. Suitability evaluation of toehold switch and EXPAR for cell-free MicroRNA biosensor development. Copeland CE; Kwon YC Biotechnol Notes; 2023; 4():83-89. PubMed ID: 39416922 [TBL] [Abstract][Full Text] [Related]
19. Design of Ribocomputing Devices for Complex Cellular Logic. McCutcheon G; Chaudhary S; Hong S; Park D; Kim J; Green AA Methods Mol Biol; 2022; 2518():65-86. PubMed ID: 35666439 [TBL] [Abstract][Full Text] [Related]