These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34833190)

  • 1. Characteristic Tearing Energy and Fatigue Crack Propagation of Filled Natural Rubber.
    Rong J; Yang J; Huang Y; Luo W; Hu X
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental method for estimating the tearing energy in rubber-like materials using the true stored energy.
    Elmukashfi E
    Sci Rep; 2021 Aug; 11(1):16229. PubMed ID: 34376707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between dynamic fatigue crack propagation properties and viscoelasticity of natural rubber/silicone rubber composites.
    Han Q; Zhang L; Wu Y
    RSC Adv; 2019 Sep; 9(51):29813-29820. PubMed ID: 35559120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Temperature on the Tear Fracture and Fatigue Life of Carbon-Black-Filled Rubber.
    Luo W; Li M; Huang Y; Yin B; Hu X
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Experimental Parameters on Fatigue Crack Growth and Heat Build-Up in Rubber.
    Stadlbauer F; Koch T; Archodoulaki VM; Planitzer F; Fidi W; Holzner A
    Materials (Basel); 2013 Nov; 6(12):5502-5516. PubMed ID: 28788405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Fatigue Life Model for Rubber Materials Based on Fracture Mechanics.
    Qiu X; Yin H; Xing Q; Jin Q
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue Crack Growth Analysis under Constant Amplitude Loading Using Finite Element Method.
    Alshoaibi AM
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode I Crack Propagation Experimental Analysis of Adhesive Bonded Joints Comprising Glass Fibre Composite Material under Impact and Constant Amplitude Fatigue Loading.
    Bautista Villamil AA; Casas-Rodriguez JP; Porras Holguin A; Silva Barrera M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and Theoretical Study on the Fatigue Crack Propagation in Stud Shear Connectors.
    Kuang Y; Wang Y; Xiang P; Tao L; Wang K; Fan F; Yang J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue crack propagation under variable amplitude loading in PMMA and bone cement.
    Evans SL
    J Mater Sci Mater Med; 2007 Sep; 18(9):1711-7. PubMed ID: 17483908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of fatigue crack closure effect on the evaluation of edge cracks with the fundamental mode of edge waves.
    Zhu H; Kotousov A; Tai Ng C
    Ultrasonics; 2024 Mar; 138():107266. PubMed ID: 38394741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue Crack Monitoring Method Based on the Lamb Wave Damage Index.
    He M; Dong C; Sun X; He J
    Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Interval Prediction of Chloroprene Rubber Crack Propagation Characteristics Based on Thermal Accelerated Aging.
    Yin S; Bai Y; Kong F; Wang Z; Fang C
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Tearing Conditions on the Crack Propagation in a Monolayer Graphene Sheet.
    Shi J; Yu W; Hu C; Duan H; Ji J; Kang Y; Cai K
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and Quantitative Analysis of Crack Precursor Size for Rubber Composites.
    Guo H; Li F; Wen S; Yang H; Zhang L
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31640209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition of rupture mode of strain crystallizing elastomers in tensile edge-crack tests.
    Tsunoda K; Kitamura Y; Urayama K
    Soft Matter; 2023 Mar; 19(10):1966-1976. PubMed ID: 36810918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Stress Intensity Factor on Rail Fatigue Crack Propagation by Finite Element Method.
    Gao R; Liu M; Wang B; Wang Y; Shao W
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Notch Effects on the Stress Intensity Factor and on the Fatigue Crack Path for Eccentric Circular Internal Cracks in Elliptically Notched Round Bars under Tensile Loading.
    Toribio J; González B; Matos JC; González I
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Determination of Fatigue Crack Propagation Thresholds from Crack Growth Data.
    Schönherr JA; Duarte L; Madia M; Zerbst U; Geilen MB; Klein M; Oechsner M
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue and Fracture Behavior of a Cold-Drawn Commercially Pure Aluminum Wire.
    Hou JP; Wang Q; Yang HJ; Wu XM; Li CH; Zhang ZF; Li XW
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.