BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34833243)

  • 1. Preparation and Characterization of Polybutylene Succinate Reinforced with Pure Cellulose Nanofibril and Lignocellulose Nanofibril Using Two-Step Process.
    Cindradewi AW; Bandi R; Park CW; Park JS; Lee EA; Kim JK; Kwon GJ; Han SY; Lee SH
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate.
    Park JS; Park CW; Han SY; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Yoo WJ; Gwon JY; Lee SH
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and Characterization of Cellulose Acetate Film Reinforced with Cellulose Nanofibril.
    Cindradewi AW; Bandi R; Park CW; Park JS; Lee EA; Kim JK; Kwon GJ; Han SY; Lee SH
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Characteristics of Wet-Spun Filament Made of Cellulose Nanofibrils with Different Chemical Compositions.
    Park CW; Park JS; Han SY; Lee EA; Kwon GJ; Seo YH; Gwon JG; Lee SY; Lee SH
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32325798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin containing cellulose nanofibrils.
    Zhang CW; Nair SS; Chen H; Yan N; Farnood R; Li FY
    Carbohydr Polym; 2020 Feb; 230():115626. PubMed ID: 31887859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose and lignocellulose nanofibril suspensions and films: A comparison.
    Amini E; Hafez I; Tajvidi M; Bousfield DW
    Carbohydr Polym; 2020 Dec; 250():117011. PubMed ID: 33049872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wet-Spun Composite Filaments from Lignocellulose Nanofibrils/Alginate and Their Physico-Mechanical Properties.
    Park JS; Han SY; Bandi R; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Youe WJ; Gwon J; Park CW; Lee SH
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement.
    Liu C; Li MC; Chen W; Huang R; Hong S; Wu Q; Mei C
    Carbohydr Polym; 2020 Oct; 246():116548. PubMed ID: 32747235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screw extrusion pretreatment for high-yield lignocellulose nanofibrils (LCNF) production from wood biomass and non-wood biomass.
    Lu H; Zhang L; Yan M; Wang K; Jiang J
    Carbohydr Polym; 2022 Feb; 277():118897. PubMed ID: 34893299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse.
    Travalini AP; Lamsal B; Magalhães WLE; Demiate IM
    Int J Biol Macromol; 2019 Oct; 139():1151-1161. PubMed ID: 31419552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015; 127():101-9. PubMed ID: 25965462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient ultraviolet blocking film on the lignin-rich lignocellulosic nanofibril from bamboo.
    Feng Q; Wang L; Wan Z; Bu X; Deng Q; Li D; Chen C; Xu Z
    Int J Biol Macromol; 2023 Oct; 250():126059. PubMed ID: 37544557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural lignocellulosic nanofibril film with excellent ultraviolet blocking performance and robust environment resistance.
    Bian H; Chen L; Dong M; Wang L; Wang R; Zhou X; Wu C; Wang X; Ji X; Dai H
    Int J Biol Macromol; 2021 Jan; 166():1578-1585. PubMed ID: 33181218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of versatile lignocellulose nanofibril/polymerizable deep eutectic solvent hydrogels with anti-swelling, adhesive and low-temperature resistant properties via a one-pot strategy.
    Fu L; Fang Z; Chen H; Wang A; Sun C; Zhai Y; Liu W; Qiao Z; Wen Y
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128289. PubMed ID: 38000570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption Characteristics of Ag Nanoparticles on Cellulose Nanofibrils with Different Chemical Compositions.
    Kwon GJ; Han SY; Park CW; Park JS; Lee EA; Kim NH; Alle M; Bandi R; Lee SH
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal, Physical and Mechanical Properties of Poly(Butylene Succinate)/Kenaf Core Fibers Composites Reinforced with Esterified Lignin.
    Saffian HA; Yamaguchi M; Ariffin H; Abdan K; Kassim NK; Lee SH; Lee CH; Shafi AR; Humairah Alias A
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a Polybutylene Succinate (PBS)/Polybutylene Adipate-Co-Terephthalate (PBAT)-Based Hybrid System Reinforced with Lignin and Zinc Nanoparticles for Potential Biomedical Applications.
    Mtibe A; Hlekelele L; Kleyi PE; Muniyasamy S; Nomadolo NE; Ofosu O; Ojijo V; John MJ
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Preparation and Characteristic Analysis of Sulfated Cellulose Nanofibril via the Pretreatment of Sulfamic Acid-Glycerol Based Deep Eutectic Solvents.
    Li W; Xue Y; He M; Yan J; Lucia LA; Chen J; Yu J; Yang G
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabricating lignin-containing cellulose nanofibrils with unique properties from agricultural residues with assistance of deep eutectic solvents.
    Li X; Ning C; Li L; Liu W; Ren Q; Hou Q
    Carbohydr Polym; 2021 Nov; 274():118650. PubMed ID: 34702469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignocellulose Nanofibre Obtained from Agricultural Wastes of Tomato, Pepper and Eggplants Improves the Performance of Films of Polyvinyl Alcohol (PVA) for Food Packaging.
    Bascón-Villegas I; Sánchez-Gutiérrez M; Pérez-Rodríguez F; Espinosa E; Rodríguez A
    Foods; 2021 Dec; 10(12):. PubMed ID: 34945594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.