These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 34833549)

  • 1. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Muscle Synergy-Inspired Method of Detecting Human Movement Intentions Based on Wearable Sensor Fusion.
    Liu YX; Wang R; Gutierrez-Farewik EM
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1089-1098. PubMed ID: 34097615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions.
    Camargo J; Ramanathan A; Flanagan W; Young A
    J Biomech; 2021 Apr; 119():110320. PubMed ID: 33677231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks.
    Marcos Mazon D; Groefsema M; Schomaker LRB; Carloni R
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Machine Learning Strategy for Locomotion Classification and Parameter Estimation Using Fusion of Wearable Sensors.
    Camargo J; Flanagan W; Csomay-Shanklin N; Kanwar B; Young A
    IEEE Trans Biomed Eng; 2021 May; 68(5):1569-1578. PubMed ID: 33710951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on Locomotion Mode Recognition and Prediction When Using Active Orthoses and Exoskeletons.
    Moreira L; Figueiredo J; Cerqueira J; Santos CP
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors.
    Shin D; Lee S; Hwang S
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of human gait activities using wearable sensors.
    Halim A; Abdellatif A; Awad MI; Atia MRA
    Proc Inst Mech Eng H; 2021 Jun; 235(6):676-687. PubMed ID: 33730894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Method for Locomotion Mode Identification Using Muscle Synergies.
    Afzal T; Iqbal K; White G; Wright AB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):608-617. PubMed ID: 27362983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications.
    Kang I; Molinaro DD; Choi G; Camargo J; Young AJ
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3234-3242. PubMed ID: 35389859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IMU-Based Locomotion Mode Identification for Transtibial Prostheses, Orthoses, and Exoskeletons.
    Gao F; Liu G; Liang F; Liao WH
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1334-1343. PubMed ID: 32286999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors.
    Martinez-Hernandez U; Dehghani-Sanij AA
    Neural Netw; 2018 Jun; 102():107-119. PubMed ID: 29567532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IMU-Based Deep Neural Networks: Prediction of Locomotor and Transition Intentions of an Osseointegrated Transfemoral Amputee.
    Bruinsma J; Carloni R
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1079-1088. PubMed ID: 34097612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-density EMG, IMU, kinetic, and kinematic open-source data for comprehensive locomotion activities.
    Dimitrov H; Bull AMJ; Farina D
    Sci Data; 2023 Nov; 10(1):789. PubMed ID: 37949938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Continuous Locomotion Mode Recognition and Transition Prediction for Human With Lower Limb Exoskeleton.
    Ma X; Liu Y; Zhang X; Masia L; Song Q
    IEEE J Biomed Health Inform; 2024 Sep; PP():. PubMed ID: 39288043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A training method for locomotion mode prediction using powered lower limb prostheses.
    Young AJ; Simon AM; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit.
    Vu HTT; Cao HL; Dong D; Verstraten T; Geeroms J; Vanderborght B
    Front Neurorobot; 2022; 16():923164. PubMed ID: 36524219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network.
    Jin H; Kang I; Choi G; Molinaro DD; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foot orientation and trajectory variability in locomotion: Effects of real-world terrain.
    Gibson E; Douglas G; Jeffries K; Delaurier J; Chestnut T; Charlton JM
    PLoS One; 2024; 19(5):e0293691. PubMed ID: 38753603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BioMAT: An Open-Source Biomechanics Multi-Activity Transformer for Joint Kinematic Predictions Using Wearable Sensors.
    Sharifi-Renani M; Mahoor MH; Clary CW
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.