These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34833575)

  • 1. Edge Computing Driven Data Sensing Strategy in the Entire Crop Lifecycle for Smart Agriculture.
    Zhang R; Li X
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture.
    Ferrández-Pastor FJ; García-Chamizo JM; Nieto-Hidalgo M; Mora-Pascual J; Mora-Martínez J
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart Crop Cultivation System Using Automated Agriculture Monitoring Environment in the Context of Bangladesh Agriculture.
    Rahman MB; Chakma JD; Momin A; Islam S; Uddin MA; Islam MA; Aryal S
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of IoT Gateway for Crop Growth Environmental Monitoring Based on Edge-Computing Technology.
    Dong M; Yu H; Sun Z; Wu M; Zhang L; Sui Y; Yu G; Han T; Zhao R
    Comput Intell Neurosci; 2022; 2022():8327006. PubMed ID: 35875755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of Crop Diseases Based on Depthwise Separable Convolution in Edge Computing.
    Gu M; Li KC; Li Z; Han Q; Fan W
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32708002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN.
    Gong L; Yu M; Jiang S; Cutsuridis V; Pearson S
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region.
    Sun C; Bian Y; Zhou T; Pan J
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Panel Spatial Econometric Analysis for Development of Green Intensive Agriculture Based on Edge Computing and Internet of Things.
    Li Q; Shi H
    J Environ Public Health; 2022; 2022():2811119. PubMed ID: 36200078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuzzy-Based Microservice Resource Management Platform for Edge Computing in the Internet of Things.
    Li DC; Huang CT; Tseng CW; Chou LD
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34072637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Adaptive Sampling Period Approach for Management of IoT Energy Consumption: Case Study Approach.
    Rodriguez-Pabon C; Riva G; Zerbini C; Ruiz-Rosero J; Ramirez-Gonzalez G; Corrales JC
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crop Classification Based on Red Edge Features Analysis of GF-6 WFV Data.
    Kang Y; Meng Q; Liu M; Zou Y; Wang X
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint Communication and Sensing: A Proof of Concept and Datasets for Greenhouse Monitoring Using LoRaWAN.
    Singh RK; Rahmani MH; Weyn M; Berkvens R
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Internet of Things to Agriculture-The LQ-FieldPheno Platform: A High-Throughput Platform for Obtaining Crop Phenotypes in Field.
    Fan J; Li Y; Yu S; Gou W; Guo X; Zhao C
    Research (Wash D C); 2023; 6():0059. PubMed ID: 36951796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context.
    Ferrández-Pastor FJ; García-Chamizo JM; Nieto-Hidalgo M; Mora-Martínez J
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29843386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring Wheat Growth Using a Portable Three-Band Instrument for Crop Growth Monitoring and Diagnosis.
    Li H; Lin W; Pang F; Jiang X; Cao W; Zhu Y; Ni J
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32443796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-Field Reinforcement Learning: A Fully Autonomous Aerial Scouting Method for Precision Agriculture.
    Zhang Z; Boubin J; Stewart C; Khanal S
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33218000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grouping and Sponsoring Centric Green Coverage Model for Internet of Things.
    Kumar V; Kumar S; AlShboul R; Aggarwal G; Kaiwartya O; Khasawneh AM; Lloret J; Al-Khasawneh MA
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34201100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IoT Smart Agriculture and Agricultural Product Income Insurance Participant Behavior Based on Fuzzy Neural Network.
    Tian J; Li D; Jia X
    Comput Intell Neurosci; 2022; 2022():4778975. PubMed ID: 35676963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of UAS in Crop Biomass Monitoring: A Review.
    Wang T; Liu Y; Wang M; Fan Q; Tian H; Qiao X; Li Y
    Front Plant Sci; 2021; 12():616689. PubMed ID: 33897719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.