These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 34833590)

  • 1. A Deep Learning Approach for Foot Trajectory Estimation in Gait Analysis Using Inertial Sensors.
    Guimarães V; Sousa I; Correia MV
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation-Invariant Spatio-Temporal Gait Analysis Using Foot-Worn Inertial Sensors.
    Guimarães V; Sousa I; Correia MV
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Deep Learning to Predict Minimum Foot-Ground Clearance Event from Toe-Off Kinematics.
    Asogwa CO; Nagano H; Wang K; Begg R
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smoother-Based 3-D Foot Trajectory Estimation Using Inertial Sensors.
    Hao M; Chen K; Fu C
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3534-3542. PubMed ID: 30932822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heel and toe clearance estimation for gait analysis using wireless inertial sensors.
    Mariani B; Rochat S; Büla CJ; Aminian K
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3162-8. PubMed ID: 22955865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors.
    Brégou Bourgeois A; Mariani B; Aminian K; Zambelli PY; Newman CJ
    Gait Posture; 2014; 39(1):436-42. PubMed ID: 24044970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normative database of spatiotemporal gait parameters using inertial sensors in typically developing children and young adults.
    Voss S; Joyce J; Biskis A; Parulekar M; Armijo N; Zampieri C; Tracy R; Palmer AS; Fefferman M; Ouyang B; Liu Y; Berry-Kravis E; O'Keefe JA
    Gait Posture; 2020 Jul; 80():206-213. PubMed ID: 32531757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts.
    Romijnders R; Warmerdam E; Hansen C; Schmidt G; Maetzler W
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients.
    Romijnders R; Warmerdam E; Hansen C; Welzel J; Schmidt G; Maetzler W
    J Neuroeng Rehabil; 2021 Feb; 18(1):28. PubMed ID: 33549105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foot progression angle estimation using a single foot-worn inertial sensor.
    Wouda FJ; Jaspar SLJO; Harlaar J; van Beijnum BF; Veltink PH
    J Neuroeng Rehabil; 2021 Feb; 18(1):37. PubMed ID: 33596942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambulatory estimation of foot placement during walking using inertial sensors.
    Martin Schepers H; van Asseldonk EH; Baten CT; Veltink PH
    J Biomech; 2010 Dec; 43(16):3138-43. PubMed ID: 20723901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple rule to automatically recognize the orientation of the sagittal plane foot angular velocity for gait analysis using IMUs on the feet of individuals with heterogeneous motor disabilities.
    Carcreff L; Moulin C; Mariani B; Armand S
    J Biomech; 2022 Apr; 135():111055. PubMed ID: 35325752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot.
    Kitagawa N; Ogihara N
    Gait Posture; 2016 Mar; 45():110-4. PubMed ID: 26979891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait Phase Estimation by Using LSTM in IMU-Based Gait Analysis-Proof of Concept.
    Sarshar M; Polturi S; Schega L
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of inertial sensor based spatiotemporal gait parameters for short walking bouts in community dwelling older adults.
    Motti Ader LG; Greene BR; McManus K; Caulfield B
    Gait Posture; 2021 Mar; 85():1-6. PubMed ID: 33497966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of Deep Learning Models in Forecasting Gait Trajectories of Children with Neurological Disorders.
    Kolaghassi R; Al-Hares MK; Marcelli G; Sirlantzis K
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The placement of foot-mounted IMU sensors does affect the accuracy of spatial parameters during regular walking.
    Küderle A; Roth N; Zlatanovic J; Zrenner M; Eskofier B; Kluge F
    PLoS One; 2022; 17(6):e0269567. PubMed ID: 35679231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance.
    Peruzzi A; Della Croce U; Cereatti A
    J Biomech; 2011 Jul; 44(10):1991-4. PubMed ID: 21601860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minding your steps: a cross-sectional pilot study using foot-worn inertial sensors and dual-task gait analysis to assess the cognitive status of older adults with mobility limitations.
    Guimarães V; Sousa I; de Bruin ED; Pais J; Correia MV
    BMC Geriatr; 2023 May; 23(1):329. PubMed ID: 37237278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning approach to estimate foot pressure distribution in walking with application for a cost-effective insole system.
    Mun F; Choi A
    J Neuroeng Rehabil; 2022 Jan; 19(1):4. PubMed ID: 35034658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.