These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34833647)

  • 1. Paper-Based Analytical Devices for Colorimetric and Luminescent Detection of Mercury in Waters: An Overview.
    Bendicho C; Lavilla I; Pena-Pereira F; la Calle I; Romero V
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical and Colorimetric Nanosensors for Detection of Heavy Metal Ions: A Review.
    Fakayode SO; Walgama C; Fernand Narcisse VE; Grant C
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants.
    Liaquat H; Imran M; Latif S; Hussain N; Bilal M
    Environ Res; 2022 Nov; 214(Pt 1):113795. PubMed ID: 35803339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices.
    Chen GH; Chen WY; Yen YC; Wang CW; Chang HT; Chen CF
    Anal Chem; 2014 Jul; 86(14):6843-9. PubMed ID: 24932699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trends in sensor development toward next-generation point-of-care testing for mercury.
    Lim JW; Kim TY; Woo MA
    Biosens Bioelectron; 2021 Jul; 183():113228. PubMed ID: 33862396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water.
    Sivakumar R; Lee NY
    Chemosphere; 2021 Jul; 275():130096. PubMed ID: 33677270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple-Indicator-Based Multidimensional Colorimetric Sensing Platform for Heavy Metal Ion Detections.
    Idros N; Chu D
    ACS Sens; 2018 Sep; 3(9):1756-1764. PubMed ID: 30193067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications.
    Chen Z; Zhang Z; Qi J; You J; Ma J; Chen L
    J Hazard Mater; 2023 Jan; 441():129889. PubMed ID: 36087533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of heavy metal by paper-based microfluidics.
    Lin Y; Gritsenko D; Feng S; Teh YC; Lu X; Xu J
    Biosens Bioelectron; 2016 Sep; 83():256-66. PubMed ID: 27131999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in the design of portable colorimetric chemical sensing devices.
    Kant T; Shrivas K; Tejwani A; Tandey K; Sharma A; Gupta S
    Nanoscale; 2023 Dec; 15(47):19016-19038. PubMed ID: 37991896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A paper-based visualization chip based on nitrogen-doped carbon quantum dots nanoprobe for Hg(Ⅱ) detection.
    Zou C; Liu Z; Wang X; Liu H; Yang M; Huo D; Hou C
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120346. PubMed ID: 34508928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical strategies based on quantum dots for heavy metal ions detection.
    Vázquez-González M; Carrillo-Carrion C
    J Biomed Opt; 2014; 19(10):101503. PubMed ID: 24853041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthogonal paper biosensor for mercury(II) combining bioluminescence and colorimetric smartphone detection.
    Lopreside A; Montali L; Wang B; Tassoni A; Ferri M; Calabretta MM; Michelini E
    Biosens Bioelectron; 2021 Dec; 194():113569. PubMed ID: 34438340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments of nanoenzyme-based colorimetric sensors for heavy metal detection and the interaction mechanism.
    Yan Z; Yuan H; Zhao Q; Xing L; Zheng X; Wang W; Zhao Y; Yu Y; Hu L; Yao W
    Analyst; 2020 May; 145(9):3173-3187. PubMed ID: 32222739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric detection of mercury ions based on plasmonic nanoparticles.
    Du J; Jiang L; Shao Q; Liu X; Marks RS; Ma J; Chen X
    Small; 2013 May; 9(9-10):1467-81. PubMed ID: 22961942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous monitoring of toxic mercury through a rhodamine-based fluorescent sensor.
    Rasheed T; Nabeel F; Bilal M; Zhao YP; Adeel M; Iqbal HMN
    Math Biosci Eng; 2019 Mar; 16(4):1861-1873. PubMed ID: 31137189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic Strength Influences on Biofunctional Au-Decorated Microparticles for Enhanced Performance in Multiplexed Colorimetric Sensors.
    Díaz-Amaya S; Zhao M; Allebach JP; Chiu GT; Stanciu LA
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32397-32409. PubMed ID: 32645268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enzymatic activity regulation-based clusterzyme sensor array for high-throughput identification of heavy metal ions.
    Li Y; Mu Z; Yuan Y; Zhou J; Bai L; Qing M
    J Hazard Mater; 2023 Jul; 454():131501. PubMed ID: 37119573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A portable dual-mode colorimetric platform for sensitive detection of Hg
    Luo L; Xi C; Zhuo J; Liu G; Yang S; Nian Y; Sun J; Zhu MQ; Wang J
    Biosens Bioelectron; 2022 Nov; 215():114519. PubMed ID: 35870334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensor heavy metal from natural resources for a green environment: A review relation between synthesis method and luminescence properties of carbon dots.
    Jariah A; Shiddiq M; Armynah B; Tahir D
    Luminescence; 2022 Aug; 37(8):1246-1258. PubMed ID: 35671060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.