These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34833654)

  • 1. High-Efficiency Multi-Sensor System for Chair Usage Detection.
    Baserga A; Grandi F; Masciadri A; Comai S; Salice F
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Software simulation of unobtrusive falls detection at night-time using passive infrared and pressure mat sensors.
    Ariani A; Redmond SJ; Chang D; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2115-8. PubMed ID: 21096573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postural Transitions during Activities of Daily Living Could Identify Frailty Status: Application of Wearable Technology to Identify Frailty during Unsupervised Condition.
    Parvaneh S; Mohler J; Toosizadeh N; Grewal GS; Najafi B
    Gerontology; 2017; 63(5):479-487. PubMed ID: 28285311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden Markov Model-Based Fall Detection With Motion Sensor Orientation Calibration: A Case for Real-Life Home Monitoring.
    Yu S; Chen H; Brown RA
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1847-1853. PubMed ID: 29990227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fall risk assessment in the wild: A critical examination of wearable sensor use in free-living conditions.
    Nouredanesh M; Godfrey A; Howcroft J; Lemaire ED; Tung J
    Gait Posture; 2021 Mar; 85():178-190. PubMed ID: 33601319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Public Datasets for Wearable Fall Detection Systems.
    Casilari E; Santoyo-Ramón JA; Cano-García JM
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28653991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human fall detection on embedded platform using depth maps and wireless accelerometer.
    Kwolek B; Kepski M
    Comput Methods Programs Biomed; 2014 Dec; 117(3):489-501. PubMed ID: 25308505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring.
    Massé F; Bourke AK; Chardonnens J; Paraschiv-Ionescu A; Aminian K
    Med Eng Phys; 2014 Jun; 36(6):739-44. PubMed ID: 24485500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity Recognition for Ambient Assisted Living with Videos, Inertial Units and Ambient Sensors.
    Ranieri CM; MacLeod S; Dragone M; Vargas PA; Romero RAF
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Feasibility Study of the Use of Smartwatches in Wearable Fall Detection Systems.
    González-Cañete FJ; Casilari E
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33807104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dataset for the development and optimization of fall detection algorithms based on wearable sensors.
    Cotechini V; Belli A; Palma L; Morettini M; Burattini L; Pierleoni P
    Data Brief; 2019 Apr; 23():103839. PubMed ID: 31372467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innovative Head-Mounted System Based on Inertial Sensors and Magnetometer for Detecting Falling Movements.
    Lin CL; Chiu WC; Chu TC; Ho YH; Chen FH; Hsu CC; Hsieh PH; Chen CH; Lin CK; Sung PS; Chen PT
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33053827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bedtime Monitoring for Fall Detection and Prevention in Older Adults.
    Fernández-Bermejo Ruiz J; Dorado Chaparro J; Santofimia Romero MJ; Villanueva Molina FJ; Del Toro García X; Bolaños Peño C; Llumiguano Solano H; Colantonio S; Flórez-Revuelta F; López JC
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Organizing IoT Device-Based Smart Diagnosing Assistance System for Activities of Daily Living.
    Park YJ; Jung SY; Son TY; Kang SJ
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33503949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triaxial Accelerometer-Based Falls and Activities of Daily Life Detection Using Machine Learning.
    Althobaiti T; Katsigiannis S; Ramzan N
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32640526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multichannel ECG recording from waist using textile sensors.
    Alizadeh Meghrazi M; Tian Y; Mahnam A; Bhattachan P; Eskandarian L; Taghizadeh Kakhki S; Popovic MR; Lankarany M
    Biomed Eng Online; 2020 Jun; 19(1):48. PubMed ID: 32546233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of a wavelet-based fall detection approach using an accelerometer and a barometric pressure sensor.
    Ejupi A; Galang C; Aziz O; Park EJ; Robinovitch S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2150-2153. PubMed ID: 29060322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying balance impairments in people with Parkinson's disease using video and wearable sensors.
    Stack E; Agarwal V; King R; Burnett M; Tahavori F; Janko B; Harwin W; Ashburn A; Kunkel D
    Gait Posture; 2018 May; 62():321-326. PubMed ID: 29614464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward real time detection of the basic living activity in home using a wearable sensor and smart home sensors.
    Bang S; Kim M; Song SK; Park SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5200-3. PubMed ID: 19163889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.