These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 34833751)

  • 1. Performance Analyses of Energy Detection Based on Square-Law Combining in MIMO-OFDM Cognitive Radio Networks.
    Lorincz J; Ramljak I; Begušić D
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algorithm for Evaluating Energy Detection Spectrum Sensing Performance of Cognitive Radio MIMO-OFDM Systems.
    Lorincz J; Ramljak I; Begusic D
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the Impact of Detection Threshold Adjustments and Noise Uncertainty on Energy Detection Performance in MIMO-OFDM Cognitive Radio Systems.
    Lorincz J; Ramljak I; Begušić D
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Survey on the Energy Detection of OFDM Signals with Dynamic Threshold Adaptation: Open Issues and Future Challenges.
    Lorincz J; Ramljak I; Begušić D
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Four Single-Sideband M-QAM Modulation Scheme Using a Shadow Equalizer for MIMO System Toward 5G Communications.
    Alhasani MM; Nguyen QN; Ohta GI; Sato T
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.
    Srinivasa N; Zhang D; Grigorian B
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):585-608. PubMed ID: 24807453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy Efficiency of User-Centric, Cell-Free Massive MIMO-OFDM with Instantaneous CSI.
    Han T; Zhao D
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressive Sensing-Based Radar Imaging and Subcarrier Allocation for Joint MIMO OFDM Radar and Communication System.
    Hwang S; Seo J; Park J; Kim H; Jeong BJ
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33808139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient and Low-Complex Signal Detection with Iterative Feedback in Wireless MIMO-OFDM Systems.
    Chen Y; Tang Y; Jiang B; Zhao Y; Bao J; Tang X
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OFDM Chirp Waveform Design Based on Subchirp Bandwidth Overlap and Segmented Transmitting for Low Correlation Interference in MIMO Radar.
    Lan X; Zhang M; Li JX
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31208014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-Inspired Wireless Communications: Where Reservoir Computing Meets MIMO-OFDM.
    Mosleh SS; Liu L; Sahin C; Zheng YR; Yi Y
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4694-4708. PubMed ID: 29990240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rényi Entropy-Based Spectrum Sensing in Mobile Cognitive Radio Networks Using Software Defined Radio.
    Cadena Muñoz E; Pedraza Martínez LF; Hernandez CA
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hardware-Based Architecture for DNN Wireless Communication Models.
    Tran VD; Lam DK; Tran TH
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental demonstration of high spectral efficient 4 × 4 MIMO SCMA-OFDM/OQAM radio over multi-core fiber system.
    Liu C; Deng L; He J; Li D; Fu S; Tang M; Cheng M; Liu D
    Opt Express; 2017 Jul; 25(15):18431-18441. PubMed ID: 28789328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance-enhanced indoor MIMO-OFDM visible light communications using individual/joint CAZAC precoding techniques.
    Chen M; Lu H; Chen D; Jin J; Chen M; Wang J
    Appl Opt; 2020 Dec; 59(34):10746-10753. PubMed ID: 33361894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achievable rate maximization for decode-and-forward MIMO-OFDM networks with an energy harvesting relay.
    Du G; Yu J
    Springerplus; 2016; 5():654. PubMed ID: 27330920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex-Valued Phase Transmittance RBF Neural Networks for Massive MIMO-OFDM Receivers.
    Soares JA; Mayer KS; de Castro FCC; Arantes DS
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Survey on Massive MIMO Systems in Presence of Channel and Hardware Impairments.
    Mokhtari Z; Sabbaghian M; Dinis R
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2 × 2 MIMO OFDM/OQAM radio signals over an elliptical core few-mode fiber.
    Mo Q; He J; Yu D; Deng L; Fu S; Tang M; Liu D
    Opt Lett; 2016 Oct; 41(19):4546-4549. PubMed ID: 27749877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system.
    He J; Li B; Deng L; Tang M; Gan L; Fu S; Shum PP; Liu D
    Opt Express; 2016 Jun; 24(12):13418-28. PubMed ID: 27410359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.