BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34833796)

  • 1. Integration and Testing of a High-Torque Servo-Driven Joint and Its Electronic Controller with Application in a Prototype Upper Limb Exoskeleton.
    Vélez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.
    Anderson A; Richburg C; Czerniecki J; Aubin P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Continuous Integral-Sliding-Mode Controller for Wearable Robots: Application to an Upper Limb Exoskeleton.
    Jebri A; Madani T; Djouani K
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():766-771. PubMed ID: 31374723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the Mechanical Support Characteristics of a Light and Wearable Robotic Exoskeleton Prototype Applied to Upper Limb Rehabilitation.
    Vélez-Guerrero MA; Callejas-Cuervo M; Álvarez JC; Mazzoleni S
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actuation system modelling and design optimization for an assistive exoskeleton for disabled and elderly with series and parallel elasticity.
    Ghaffar A; Dehghani-Sanij AA; Xie SQ
    Technol Health Care; 2023; 31(4):1129-1151. PubMed ID: 36970915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation].
    Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechatronics design and testing of a cable-driven upper limb rehabilitation exoskeleton with variable stiffness.
    Li Z; Li W; Chen WH; Zhang J; Wang J; Fang Z; Yang G
    Rev Sci Instrum; 2021 Feb; 92(2):024101. PubMed ID: 33648137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a perfect balance system for active upper-extremity exoskeletons.
    Smith RL; Lobo-Prat J; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650376. PubMed ID: 24187195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, Development, and Testing of an Intelligent Wearable Robotic Exoskeleton Prototype for Upper Limb Rehabilitation.
    Vélez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
    Zhu Y; Zheng T; Jin H; Yang J; Zhao J
    Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative and Qualitative Evaluation of Exoskeleton Transparency Controllers for Upper-Limb Neurorehabilitation.
    Gasperina SD; Ratschat AL; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis and control of the torque profile of the upper limb using a kinetic model and motion measurements.
    Abdul-Ameer HK
    Int J Artif Organs; 2022 Jul; 45(7):631-641. PubMed ID: 35603541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke.
    Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N
    J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Elbow Exoskeleton for Upper Limb Rehabilitation with Series Elastic Actuator and Cable-driven Differential.
    Chen T; Casas R; Lum PS
    IEEE Trans Robot; 2019 Dec; 35(6):1464-1474. PubMed ID: 31929766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equations for estimating the static supportive torque provided by upper-limb exoskeletons.
    Watterworth MWB; Dharmaputra R; Porto R; Cort JA; La Delfa NJ
    Appl Ergon; 2023 Nov; 113():104092. PubMed ID: 37499527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.