BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34833819)

  • 1. Sensor-Based Human Activity Recognition Using Adaptive Class Hierarchy.
    Kondo K; Hasegawa T
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification.
    Sun Y; Xue B; Zhang M; Yen GG; Lv J
    IEEE Trans Cybern; 2020 Sep; 50(9):3840-3854. PubMed ID: 32324588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Convolutional Neural Networks Training With Channel-Selectivity for Human Activity Recognition Based on Sensors.
    Huang W; Zhang L; Teng Q; Song C; He J
    IEEE J Biomed Health Inform; 2021 Oct; 25(10):3834-3843. PubMed ID: 34170835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved human activity recognition technique based on convolutional neural network.
    Raj R; Kos A
    Sci Rep; 2023 Dec; 13(1):22581. PubMed ID: 38114574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IMU-Based Fitness Activity Recognition Using CNNs for Time Series Classification.
    Müller PN; Müller AJ; Achenbach P; Göbel S
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Completely Automated CNN Architecture Design Based on Blocks.
    Sun Y; Xue B; Zhang M; Yen GG
    IEEE Trans Neural Netw Learn Syst; 2020 Apr; 31(4):1242-1254. PubMed ID: 31247572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of convolutional neural networks for recognition of tenogenic differentiation based on cellular morphology.
    Dursun G; Tandale SB; Gulakala R; Eschweiler J; Tohidnezhad M; Markert B; Stoffel M
    Comput Methods Programs Biomed; 2021 Sep; 208():106279. PubMed ID: 34343743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical CNN-based occlusal surface morphology analysis for classifying posterior tooth type using augmented images from 3D dental surface models.
    Chen Q; Huang J; Salehi HS; Zhu H; Lian L; Lai X; Wei K
    Comput Methods Programs Biomed; 2021 Sep; 208():106295. PubMed ID: 34329895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features.
    Zhou L; Li Q; Huo G; Zhou Y
    Comput Intell Neurosci; 2017; 2017():3792805. PubMed ID: 28316614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do Convolutional Neural Networks Learn Class Hierarchy?
    Bilal A; Jourabloo A; Ye M; Liu X; Ren L
    IEEE Trans Vis Comput Graph; 2018 Jan; 24(1):152-162. PubMed ID: 28866553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whitening-Aided Learning from Radar Micro-Doppler Signatures for Human Activity Recognition.
    Sadeghi Adl Z; Ahmad F
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.
    Hu W; Zhang Y; Li L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AutoTune: Automatically Tuning Convolutional Neural Networks for Improved Transfer Learning.
    Basha SHS; Vinakota SK; Pulabaigari V; Mukherjee S; Dubey SR
    Neural Netw; 2021 Jan; 133():112-122. PubMed ID: 33181405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Addressing class imbalance in deep learning for small lesion detection on medical images.
    Bria A; Marrocco C; Tortorella F
    Comput Biol Med; 2020 May; 120():103735. PubMed ID: 32250861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CNN-LRP: Understanding Convolutional Neural Networks Performance for Target Recognition in SAR Images.
    Zang B; Ding L; Feng Z; Zhu M; Lei T; Xing M; Zhou X
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matched Filter Interpretation of CNN Classifiers with Application to HAR.
    Farag MM
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Wearable-Based Activity Recognition Using Image Representations.
    Sanchez Guinea A; Sarabchian M; Mühlhäuser M
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of focal liver lesions in CT images using convolutional neural networks with lesion information augmented patches and synthetic data augmentation.
    Lee H; Lee H; Hong H; Bae H; Lim JS; Kim J
    Med Phys; 2021 Sep; 48(9):5029-5046. PubMed ID: 34287951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.