BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 34834124)

  • 1. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights.
    Omran B; Baek KH
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pleiotropic functions of antioxidant nanoparticles for longevity and medicine.
    Narayanan KB; Park HH
    Adv Colloid Interface Sci; 2013 Dec; 201-202():30-42. PubMed ID: 24206941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications.
    Khalil I; Yehye WA; Etxeberria AE; Alhadi AA; Dezfooli SM; Julkapli NBM; Basirun WJ; Seyfoddin A
    Antioxidants (Basel); 2019 Dec; 9(1):. PubMed ID: 31888023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions.
    Sandhir R; Yadav A; Sunkaria A; Singhal N
    Neurochem Int; 2015 Oct; 89():209-26. PubMed ID: 26315960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification and application of metal-based nanoantioxidants in medicine and healthcare.
    Nam NN; Tran NKS; Nguyen TT; Trai NN; Thuy NP; Do HDK; Tran NHT; Trinh KTL
    Beilstein J Nanotechnol; 2024; 15():396-415. PubMed ID: 38633767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators.
    Yang Y; Zhang M; Song H; Yu C
    Acc Chem Res; 2020 Aug; 53(8):1545-1556. PubMed ID: 32667182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocarrier: a potential tool for future antioxidant therapy.
    Du L; Li J; Chen C; Liu Y
    Free Radic Res; 2014 Sep; 48(9):1061-9. PubMed ID: 24848631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli.
    Zhang XF; Shen W; Gurunathan S
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27271586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevention of microbial biofilms - the contribution of micro and nanostructured materials.
    Grumezescu AM; Chifiriuc CM
    Curr Med Chem; 2014; 21(29):3311. PubMed ID: 24606506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic Nanoparticles from Grape Seed for Modulating Oxidative Stress.
    Wang T; Fan Q; Hong J; Chen Z; Zhou X; Zhang J; Dai Y; Jiang H; Gu Z; Cheng Y; Li Y
    Small; 2021 Nov; 17(45):e2102485. PubMed ID: 34605169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonaceous Nanomaterials-Mediated Defense Against Oxidative Stress.
    Forbot N; Bolibok P; Wiśniewski M; Roszek K
    Mini Rev Med Chem; 2020; 20(4):294-307. PubMed ID: 31738152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-State Preparation of Metal and Metal Oxides Nanostructures and Their Application in Environmental Remediation.
    Diaz C; Valenzuela ML; Laguna-Bercero MÁ
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards nanostructured red-ox active bio-interfaces: Bioinspired antibacterial hybrid melanin-CeO
    Pota G; Silvestri B; Vitiello G; Gallucci N; Di Girolamo R; Scialla S; Raucci MG; Ambrosio L; Di Napoli M; Zanfardino A; Varcamonti M; Pezzella A; Luciani G
    Biomater Adv; 2023 Oct; 153():213558. PubMed ID: 37467646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoantioxidant Materials: Nanoengineering Inspired by Nature.
    Fragou F; Theofanous A; Deligiannakis Y; Louloudi M
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Nanomaterials with Intrinsic Antioxidant Activity by Surface Functionalization of Niosomes with Natural Phenolic Acids.
    Mazzotta E; Orlando C; Muzzalupo R
    Pharmaceutics; 2021 May; 13(6):. PubMed ID: 34063874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic nanomaterials: Development of protein coated nanoceria as a potential antioxidative nano-agent for the effective scavenging of reactive oxygen species in vitro and in zebrafish model.
    Bhushan B; Nandhagopal S; Rajesh Kannan R; Gopinath P
    Colloids Surf B Biointerfaces; 2016 Oct; 146():375-86. PubMed ID: 27388966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High antioxidant activity of gadolinium-yttrium orthovanadate nanoparticles in cell-free and biological milieu.
    Maksimchuk PO; Hubenko KO; Seminko VV; Karbivskii VL; Tkachenko AS; Onishchenko AI; Prokopyuk VY; Yefimova SL
    Nanotechnology; 2021 Nov; 33(5):. PubMed ID: 34673550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant potentials of nanoceria synthesized by solution plasma process and its biocompatibility study.
    Davoodbasha M; Park BR; Rhee WJ; Lee SY; Kim JW
    Arch Biochem Biophys; 2018 May; 645():42-49. PubMed ID: 29427590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallic Nanoantioxidants as Potential Therapeutics for Type 2 Diabetes: A Hypothetical Background and Translational Perspectives.
    Lushchak O; Zayachkivska A; Vaiserman A
    Oxid Med Cell Longev; 2018; 2018():3407375. PubMed ID: 30050652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and enhanced antioxidant and membrane-protective activity of curcumin@AlOOH nanoparticles.
    Martakov IS; Shevchenko OG
    J Inorg Biochem; 2020 Sep; 210():111168. PubMed ID: 32652264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.