BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 34834124)

  • 41. Nitroxide-functional PEGylated nanostars arrest cellular oxidative stress and exhibit preferential accumulation in co-cultured breast cancer cells.
    Dao NV; Ercole F; Li Y; Davis TP; Kaminskas LM; Sloan EK; Quinn JF; Whittaker MR
    J Mater Chem B; 2021 Sep; 9(37):7805-7820. PubMed ID: 34586131
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease.
    Li YJ; Luo LJ; Harroun SG; Wei SC; Unnikrishnan B; Chang HT; Huang YF; Lai JY; Huang CC
    Nanoscale; 2019 Mar; 11(12):5580-5594. PubMed ID: 30860532
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microbial biomanufacture of metal/metallic nanomaterials and metabolic engineering: design strategies, fundamental mechanisms, and future opportunities.
    Yuan J; Cao J; Yu F; Ma J; Zhang D; Tang Y; Zheng J
    J Mater Chem B; 2021 Sep; 9(33):6491-6506. PubMed ID: 34296734
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reliable methods for silica coating of Au nanoparticles.
    Pastoriza-Santos I; Liz-Marzán LM
    Methods Mol Biol; 2013; 1025():75-93. PubMed ID: 23918330
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inherent Chemotherapeutic Anti-Cancer Effects of Low-Dimensional Nanomaterials.
    Fu W; Zhou W; Chu PK; Yu XF
    Chemistry; 2019 Aug; 25(47):10995-11006. PubMed ID: 31206798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation.
    Cai X; Lee A; Ji Z; Huang C; Chang CH; Wang X; Liao YP; Xia T; Li R
    Part Fibre Toxicol; 2017 Apr; 14(1):13. PubMed ID: 28431555
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lipid-Based Nanoparticles as Carriers for Dermal Delivery of Antioxidants.
    Lucia M
    Curr Drug Metab; 2017; 18(5):469-480. PubMed ID: 28228079
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quercetin conjugated poly(β-amino esters) nanogels for the treatment of cellular oxidative stress.
    Gupta P; Authimoolam SP; Hilt JZ; Dziubla TD
    Acta Biomater; 2015 Nov; 27():194-204. PubMed ID: 26318804
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oxidative Stress and Marine Carotenoids: Application by Using Nanoformulations.
    Genç Y; Bardakci H; Yücel Ç; Karatoprak GŞ; Küpeli Akkol E; Hakan Barak T; Sobarzo-Sánchez E
    Mar Drugs; 2020 Aug; 18(8):. PubMed ID: 32823595
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy.
    Liang H; Zhang XB; Lv Y; Gong L; Wang R; Zhu X; Yang R; Tan W
    Acc Chem Res; 2014 Jun; 47(6):1891-901. PubMed ID: 24780000
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis and encapsulation of V(IV,V) compounds in silica nanoparticles targeting development of antioxidant and antiradical nanomaterials.
    Halevas E; Nday CM; Eleftheriadou D; Jackson G; Psycharis V; Raptopoulou CP; Reid DG; Ypsilantis K; Litsardakis G; Salifoglou A
    J Inorg Biochem; 2019 May; 194():180-199. PubMed ID: 30875656
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biowaste- and nature-derived (nano)materials: Biosynthesis, stability and environmental applications.
    Ashrafi G; Nasrollahzadeh M; Jaleh B; Sajjadi M; Ghafuri H
    Adv Colloid Interface Sci; 2022 Mar; 301():102599. PubMed ID: 35066374
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Catalytically active nanomaterials: a promising candidate for artificial enzymes.
    Lin Y; Ren J; Qu X
    Acc Chem Res; 2014 Apr; 47(4):1097-105. PubMed ID: 24437921
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Green Nanoparticle Scavengers against Oxidative Stress.
    Yang P; Zhang J; Xiang S; Jin Z; Zhu F; Wang T; Duan G; Liu X; Gu Z; Li Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39126-39134. PubMed ID: 34383476
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plant extract-based synthesis of metallic nanomaterials, their applications, and safety concerns.
    Ullah A; Lim SI
    Biotechnol Bioeng; 2022 Sep; 119(9):2273-2304. PubMed ID: 35635495
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoparticles: toxicity, radicals, electron transfer, and antioxidants.
    Kovacic P; Somanathan R
    Methods Mol Biol; 2013; 1028():15-35. PubMed ID: 23740111
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnetically directed antioxidant and antimicrobial agent: synthesis and surface functionalization of magnetite with quercetin.
    Shah ST; Yehye WA; Chowdhury ZZ; Simarani K
    PeerJ; 2019; 7():e7651. PubMed ID: 31768301
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functionalized Nanomaterial Assembling and Biosynthesis Using the Extremophile Deinococcus radiodurans for Multifunctional Applications.
    Li J; Webster TJ; Tian B
    Small; 2019 May; 15(20):e1900600. PubMed ID: 30925017
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system.
    Singh N; Savanur MA; Srivastava S; D'Silva P; Mugesh G
    Nanoscale; 2019 Feb; 11(9):3855-3863. PubMed ID: 30758009
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    Benedec D; Oniga I; Cuibus F; Sevastre B; Stiufiuc G; Duma M; Hanganu D; Iacovita C; Stiufiuc R; Lucaciu CM
    Int J Nanomedicine; 2018; 13():1041-1058. PubMed ID: 29503540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.