BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34834136)

  • 1. Adsorption Capacities of Iron Hydroxide for Arsenate and Arsenite Removal from Water by Chemical Coagulation: Kinetics, Thermodynamics and Equilibrium Studies.
    Inam MA; Khan R; Lee KH; Akram M; Ahmed Z; Lee KG; Wie YM
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Arsenic Oxyanions from Water by Ferric Chloride-Optimization of Process Conditions and Implications for Improving Coagulation Performance.
    Inam MA; Khan R; Lee KH; Wie YM
    Int J Environ Res Public Health; 2021 Sep; 18(18):. PubMed ID: 34574737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic sorption onto laterite iron concretions: temperature effect.
    Partey F; Norman D; Ndur S; Nartey R
    J Colloid Interface Sci; 2008 May; 321(2):493-500. PubMed ID: 18346752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of a novel iron infused biochar developed from
    Verma L; Azad A; Singh J
    Int J Phytoremediation; 2022; 24(9):919-932. PubMed ID: 34623940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of arsenic from aqueous solution by novel iron and iron-zirconium modified activated carbon derived from chemical carbonization of Tectona grandis sawdust: Isotherm, kinetic, thermodynamic and breakthrough curve modelling.
    Sahu N; Singh J; Koduru JR
    Environ Res; 2021 Sep; 200():111431. PubMed ID: 34081972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced arsenate removal by Fe-impregnated canola straw: assessment of XANES solid-phase speciation, impacts of solution properties, sorption mechanisms, and evolutionary polynomial regression (EPR) models.
    Zoroufchi Benis K; Shakouri M; McPhedran K; Soltan J
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12659-12676. PubMed ID: 33085008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe-Mn binary oxides: influence of Mn/Fe ratio, pH, Ca2+, and humic acid.
    Zhang G; Liu H; Qu J; Jefferson W
    J Colloid Interface Sci; 2012 Jan; 366(1):141-146. PubMed ID: 22014399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenate removal on the iron oxide ion exchanger modified with Neodymium(III) ions.
    Dudek S; Kołodyńska D
    J Environ Manage; 2022 Apr; 307():114551. PubMed ID: 35066202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of As(III), As(V) and Cu(II) on zirconium oxide immobilized alginate beads in aqueous phase.
    Kwon OH; Kim JO; Cho DW; Kumar R; Baek SH; Kurade MB; Jeon BH
    Chemosphere; 2016 Oct; 160():126-33. PubMed ID: 27372261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and abiotic oxidation of arsenic by aged biofilter media: equilibrium and kinetics.
    Sahabi DM; Takeda M; Suzuki I; Koizumi J
    J Hazard Mater; 2009 Sep; 168(2-3):1310-8. PubMed ID: 19346074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic removal performance and mechanism from water on iron hydroxide nanopetalines.
    Wang Y; Zhang L; Guo C; Gao Y; Pan S; Liu Y; Li X; Wang Y
    Sci Rep; 2022 Oct; 12(1):17264. PubMed ID: 36241687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coagulation removal of nickel (II) ions by ferric chloride: Efficiency and mechanism.
    Linnikov ОD; Rodina IV; Zakharova GS; Mikhalev KN; Baklanova IV; Kuznetsova YV; Germov AY; Goloborodskii BY; Tyutyunnik AP; Fattakhova ZA
    Water Environ Res; 2022; 94(12):e10827. PubMed ID: 36514831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study on Fe(III)-chitosan and Fe(III)-chitosan-CTAB composites for As(V) removal from water: preparation, characterization and reaction mechanism.
    Jiang C; Zhang T; Li S; Yang Z
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77851-77863. PubMed ID: 35680754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism.
    Cheng Y; Zhang S; Huang T; Li Y
    Water Environ Res; 2019 Jun; 91(6):536-545. PubMed ID: 30667121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of Monothioarsenate to the Natural Sediments and Its Competition with Arsenite and Arsenate.
    Shan H; Zhang J; Peng S; Zhan H; Liao D
    Int J Environ Res Public Health; 2021 Dec; 18(23):. PubMed ID: 34886565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents.
    Foroutan R; Mohammadi R; Adeleye AS; Farjadfard S; Esvandi Z; Arfaeinia H; Sorial GA; Ramavandi B; Sahebi S
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29748-29762. PubMed ID: 31407259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption of uranium(VI) onto hydrous ferric oxide-modified zeolite: Assessment of the effect of pH, contact time, temperature, selected cations and anions on sorbent interactions.
    Nekhunguni PM; Tavengwa NT; Tutu H
    J Environ Manage; 2017 Dec; 204(Pt 1):571-582. PubMed ID: 28938196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of Arsenic Species with Organic Ligands: Competitive Removal from Water by Coagulation-Flocculation-Sedimentation (C/F/S).
    Inam MA; Khan R; Akram M; Khan S; Park DR; Yeom IT
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31022881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of silicic acid on arsenate and arsenite retention mechanisms on 6-L ferrihydrite: A spectroscopic and batch adsorption approach.
    Gao X; Root RA; Farrell J; Ela W; Chorover J
    Appl Geochem; 2013 Nov; 38():110-120. PubMed ID: 25382933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced arsenite removal through surface-catalyzed oxidative coagulation treatment.
    Li Y; Bland GD; Yan W
    Chemosphere; 2016 May; 150():650-658. PubMed ID: 26897520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.