These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 34834141)
1. Theoretical Thermodynamic Efficiency Limit of Isothermal Solar Fuel Generation from H Wang H; Kong H; Wang J; Liu M; Su B; Lundin SB Molecules; 2021 Nov; 26(22):. PubMed ID: 34834141 [TBL] [Abstract][Full Text] [Related]
2. Solar-Driven Thermochemical Splitting of CO Tou M; Michalsky R; Steinfeld A Joule; 2017 Sep; 1(1):146-154. PubMed ID: 29034368 [TBL] [Abstract][Full Text] [Related]
3. Solar thermochemical CO Wang L; Ma T; Dai S; Ren T; Chang Z; Fu M; Li X; Li Y RSC Adv; 2020 Sep; 10(59):35740-35752. PubMed ID: 35517063 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamic Assessment of a Solar-Driven Integrated Membrane Reactor for Ethanol Steam Reforming. Wang H; Wang B; Lundin SB; Kong H; Su B; Wang J Molecules; 2021 Nov; 26(22):. PubMed ID: 34834013 [TBL] [Abstract][Full Text] [Related]
5. Solar thermochemical splitting of water to generate hydrogen. Rao CNR; Dey S Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13385-13393. PubMed ID: 28522461 [TBL] [Abstract][Full Text] [Related]
6. A Review of Oxygen Carrier Materials and Related Thermochemical Redox Processes for Concentrating Solar Thermal Applications. Abanades S Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176464 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic Analysis of Methylcyclohexane Dehydrogenation and Solar Energy Storage via Solar-Driven Hydrogen Permeation Membrane Reactor. Wang H; Wang B; Kong H; Lu X; Hu X Membranes (Basel); 2020 Nov; 10(12):. PubMed ID: 33260965 [TBL] [Abstract][Full Text] [Related]
8. A solar tower fuel plant for the thermochemical production of kerosene from H Zoller S; Koepf E; Nizamian D; Stephan M; Patané A; Haueter P; Romero M; González-Aguilar J; Lieftink D; de Wit E; Brendelberger S; Sizmann A; Steinfeld A Joule; 2022 Jul; 6(7):1606-1616. PubMed ID: 35915707 [TBL] [Abstract][Full Text] [Related]
9. High-temperature isothermal chemical cycling for solar-driven fuel production. Hao Y; Yang CK; Haile SM Phys Chem Chem Phys; 2013 Oct; 15(40):17084-92. PubMed ID: 24002380 [TBL] [Abstract][Full Text] [Related]
10. Copper ferrite and cobalt oxide two-layer coated macroporous SiC substrate for efficient CO Guene Lougou B; Geng B; Jiang B; Zhang H; Sun Q; Shuai Y; Qu Z; Zhao J; Wang CH J Colloid Interface Sci; 2022 Dec; 627():516-531. PubMed ID: 35870404 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic evaluation of solar assisted ZnO/Zn thermochemical CO Bhosale RR; Gupta RB; Shende RV Environ Res; 2022 Sep; 212(Pt B):113266. PubMed ID: 35405130 [TBL] [Abstract][Full Text] [Related]
12. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting. Ermanoski I; Miller JE; Allendorf MD Phys Chem Chem Phys; 2014 May; 16(18):8418-27. PubMed ID: 24668070 [TBL] [Abstract][Full Text] [Related]
13. Boosted Solar Thermochemical Low-Temperature CO Zong T; Shen Q; Han Y; Ruan C; Liu S; Wang C; Tian M; Li L; Zhu Y; Wang X ChemSusChem; 2024 Aug; ():e202401295. PubMed ID: 39148488 [TBL] [Abstract][Full Text] [Related]
14. Facile CO Warren KJ; Hill CM; Carrillo RJ; Scheffe JR Phys Chem Chem Phys; 2020 Apr; 22(16):8545-8556. PubMed ID: 32253404 [TBL] [Abstract][Full Text] [Related]
15. Oxygen Exchange in Dual-Phase La Bork AH; Carrillo AJ; Hood ZD; Yildiz B; Rupp JLM ACS Appl Mater Interfaces; 2020 Jul; 12(29):32622-32632. PubMed ID: 32551512 [TBL] [Abstract][Full Text] [Related]
16. Catalytic enhancement of production of solar thermochemical fuels: opportunities and limitations. Coronado JM; Bayón A Phys Chem Chem Phys; 2023 Jul; 25(26):17092-17106. PubMed ID: 37340776 [TBL] [Abstract][Full Text] [Related]
17. Effect of H Lei M; Sun C; Zou C; Mi H; Wang C Environ Sci Pollut Res Int; 2018 Apr; 25(12):11767-11774. PubMed ID: 29442311 [TBL] [Abstract][Full Text] [Related]
18. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials. Tatin A; Comminges C; Kokoh B; Costentin C; Robert M; Savéant JM Proc Natl Acad Sci U S A; 2016 May; 113(20):5526-9. PubMed ID: 27140621 [TBL] [Abstract][Full Text] [Related]
19. Design principles of perovskites for solar-driven thermochemical splitting of CO Ezbiri M; Takacs M; Stolz B; Lungthok J; Steinfeld A; Michalsky R J Mater Chem A Mater; 2017 Aug; 5(29):15105-15115. PubMed ID: 29456856 [TBL] [Abstract][Full Text] [Related]
20. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Chueh WC; Falter C; Abbott M; Scipio D; Furler P; Haile SM; Steinfeld A Science; 2010 Dec; 330(6012):1797-801. PubMed ID: 21205663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]