BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34834141)

  • 1. Theoretical Thermodynamic Efficiency Limit of Isothermal Solar Fuel Generation from H
    Wang H; Kong H; Wang J; Liu M; Su B; Lundin SB
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar-Driven Thermochemical Splitting of CO
    Tou M; Michalsky R; Steinfeld A
    Joule; 2017 Sep; 1(1):146-154. PubMed ID: 29034368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar thermochemical CO
    Wang L; Ma T; Dai S; Ren T; Chang Z; Fu M; Li X; Li Y
    RSC Adv; 2020 Sep; 10(59):35740-35752. PubMed ID: 35517063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic Assessment of a Solar-Driven Integrated Membrane Reactor for Ethanol Steam Reforming.
    Wang H; Wang B; Lundin SB; Kong H; Su B; Wang J
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar thermochemical splitting of water to generate hydrogen.
    Rao CNR; Dey S
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13385-13393. PubMed ID: 28522461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of Oxygen Carrier Materials and Related Thermochemical Redox Processes for Concentrating Solar Thermal Applications.
    Abanades S
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic Analysis of Methylcyclohexane Dehydrogenation and Solar Energy Storage via Solar-Driven Hydrogen Permeation Membrane Reactor.
    Wang H; Wang B; Kong H; Lu X; Hu X
    Membranes (Basel); 2020 Nov; 10(12):. PubMed ID: 33260965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A solar tower fuel plant for the thermochemical production of kerosene from H
    Zoller S; Koepf E; Nizamian D; Stephan M; Patané A; Haueter P; Romero M; González-Aguilar J; Lieftink D; de Wit E; Brendelberger S; Sizmann A; Steinfeld A
    Joule; 2022 Jul; 6(7):1606-1616. PubMed ID: 35915707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-temperature isothermal chemical cycling for solar-driven fuel production.
    Hao Y; Yang CK; Haile SM
    Phys Chem Chem Phys; 2013 Oct; 15(40):17084-92. PubMed ID: 24002380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper ferrite and cobalt oxide two-layer coated macroporous SiC substrate for efficient CO
    Guene Lougou B; Geng B; Jiang B; Zhang H; Sun Q; Shuai Y; Qu Z; Zhao J; Wang CH
    J Colloid Interface Sci; 2022 Dec; 627():516-531. PubMed ID: 35870404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic evaluation of solar assisted ZnO/Zn thermochemical CO
    Bhosale RR; Gupta RB; Shende RV
    Environ Res; 2022 Sep; 212(Pt B):113266. PubMed ID: 35405130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting.
    Ermanoski I; Miller JE; Allendorf MD
    Phys Chem Chem Phys; 2014 May; 16(18):8418-27. PubMed ID: 24668070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile CO
    Warren KJ; Hill CM; Carrillo RJ; Scheffe JR
    Phys Chem Chem Phys; 2020 Apr; 22(16):8545-8556. PubMed ID: 32253404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen Exchange in Dual-Phase La
    Bork AH; Carrillo AJ; Hood ZD; Yildiz B; Rupp JLM
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32622-32632. PubMed ID: 32551512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic enhancement of production of solar thermochemical fuels: opportunities and limitations.
    Coronado JM; Bayón A
    Phys Chem Chem Phys; 2023 Jul; 25(26):17092-17106. PubMed ID: 37340776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of H
    Lei M; Sun C; Zou C; Mi H; Wang C
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11767-11774. PubMed ID: 29442311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.
    Tatin A; Comminges C; Kokoh B; Costentin C; Robert M; Savéant JM
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5526-9. PubMed ID: 27140621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design principles of perovskites for solar-driven thermochemical splitting of CO
    Ezbiri M; Takacs M; Stolz B; Lungthok J; Steinfeld A; Michalsky R
    J Mater Chem A Mater; 2017 Aug; 5(29):15105-15115. PubMed ID: 29456856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria.
    Chueh WC; Falter C; Abbott M; Scipio D; Furler P; Haile SM; Steinfeld A
    Science; 2010 Dec; 330(6012):1797-801. PubMed ID: 21205663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen production and solar energy storage with thermo-electrochemically enhanced steam methane reforming.
    Guo K; Liu M; Wang B; Lou J; Hao Y; Pei G; Jin H
    Sci Bull (Beijing); 2024 Apr; 69(8):1109-1121. PubMed ID: 38413331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.