BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34834255)

  • 1. Observations on the Changing Shape of the Ice Mass and the Determination of the Sublimation End Point in Freeze-Drying: An Application for Through-Vial Impedance Spectroscopy (TVIS).
    Pandya B; Smith G; Ermolina I; Polygalov E
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of ice interface temperature, sublimation rate and the dried product resistance, and its application in the assessment of microcollapse using through-vial impedance spectroscopy.
    Jeeraruangrattana Y; Smith G; Polygalov E; Ermolina I
    Eur J Pharm Biopharm; 2020 Jul; 152():144-163. PubMed ID: 32353532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Point Wireless Temperature Sensing System for Monitoring Pharmaceutical Lyophilization.
    Jiang X; Zhu T; Kodama T; Raghunathan N; Alexeenko A; Peroulis D
    Front Chem; 2018; 6():288. PubMed ID: 30065924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat and mass transfer scale-up issues during freeze-drying, I: atypical radiation and the edge vial effect.
    Rambhatla S; Pikal MJ
    AAPS PharmSciTech; 2003; 4(2):E14. PubMed ID: 12916896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Imaging as a Noncontact Inline Process Analytical Tool for Product Temperature Monitoring during Continuous Freeze-Drying of Unit Doses.
    Van Bockstal PJ; Corver J; De Meyer L; Vervaet C; De Beer T
    Anal Chem; 2018 Nov; 90(22):13591-13599. PubMed ID: 30339362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An impedance-based process analytical technology for monitoring the lyophilisation process.
    Smith G; Polygalov E; Arshad MS; Page T; Taylor J; Ermolina I
    Int J Pharm; 2013 Jun; 449(1-2):72-83. PubMed ID: 23591008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process control in freeze drying: determination of the end point of sublimation drying by an electronic moisture sensor.
    Roy ML; Pikal MJ
    J Parenter Sci Technol; 1989; 43(2):60-6. PubMed ID: 2709237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools.
    De Beer TR; Vercruysse P; Burggraeve A; Quinten T; Ouyang J; Zhang X; Vervaet C; Remon JP; Baeyens WR
    J Pharm Sci; 2009 Sep; 98(9):3430-46. PubMed ID: 19130604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature/end point monitoring and modelling of a batch freeze-drying process using an infrared camera.
    Harguindeguy M; Fissore D
    Eur J Pharm Biopharm; 2021 Jan; 158():113-122. PubMed ID: 33171203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of controlled ice nucleation on the freeze-drying of pharmaceutical products: the secondary drying step.
    Oddone I; Barresi AA; Pisano R
    Int J Pharm; 2017 May; 524(1-2):134-140. PubMed ID: 28363858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of manometric temperature measurement as a method of monitoring product temperature during lyophilization.
    Milton N; Pikal MJ; Roy ML; Nail SL
    PDA J Pharm Sci Technol; 1997; 51(1):7-16. PubMed ID: 9099059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses.
    De Meyer L; Van Bockstal PJ; Corver J; Vervaet C; Remon JP; De Beer T
    Int J Pharm; 2015 Dec; 496(1):75-85. PubMed ID: 25981618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeze-drying: A relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals.
    Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C
    Adv Food Nutr Res; 2020; 93():1-58. PubMed ID: 32711860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncontact Infrared-Mediated Heat Transfer During Continuous Freeze-Drying of Unit Doses.
    Van Bockstal PJ; De Meyer L; Corver J; Vervaet C; De Beer T
    J Pharm Sci; 2017 Jan; 106(1):71-82. PubMed ID: 27321237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a soft sensor for the fast estimation of dried cake resistance during a freeze-drying cycle.
    Bosca S; Barresi AA; Fissore D
    Int J Pharm; 2013 Jul; 451(1-2):23-33. PubMed ID: 23624086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and Heat Transfer Control During Freeze Drying. Effect of Vial Holders and Influence of Pressure.
    Palmkron SB; Gustavsson L; Wahlgren M; Bergensthål B; Fureby AM
    Pharm Res; 2022 Oct; 39(10):2597-2606. PubMed ID: 35925479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of soft sensors to monitor a pharmaceuticals freeze-drying process in vials.
    Bosca S; Barresi AA; Fissore D
    Pharm Dev Technol; 2014 Mar; 19(2):148-59. PubMed ID: 23336717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Vial Geometry Variability Influences Heat Transfer and Product Temperature During Freeze-Drying.
    Scutellà B; Passot S; Bourlés E; Fonseca F; Tréléa IC
    J Pharm Sci; 2017 Mar; 106(3):770-778. PubMed ID: 27939928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.