BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34834337)

  • 1. Antibacterial Activity of T22, a Specific Peptidic Ligand of the Tumoral Marker CXCR4.
    Serna N; Carratalá JV; Conchillo-Solé O; Martínez-Torró C; Unzueta U; Mangues R; Ferrer-Miralles N; Daura X; Vázquez E; Villaverde A
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective delivery of T22-PE24-H6 to CXCR4
    Falgàs A; Pallarès V; Serna N; Sánchez-García L; Sierra J; Gallardo A; Alba-Castellón L; Álamo P; Unzueta U; Villaverde A; Vázquez E; Mangues R; Casanova I
    Theranostics; 2020; 10(12):5169-5180. PubMed ID: 32373205
    [No Abstract]   [Full Text] [Related]  

  • 3. Recruiting potent membrane penetrability in tumor cell-targeted protein-only nanoparticles.
    Serna N; Sánchez JM; Unzueta U; Sánchez-García L; Sánchez-Chardi A; Mangues R; Vázquez E; Villaverde A
    Nanotechnology; 2019 Mar; 30(11):115101. PubMed ID: 30561375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular CXCR4⁺ cell targeting with T22-empowered protein-only nanoparticles.
    Unzueta U; Céspedes MV; Ferrer-Miralles N; Casanova I; Cedano J; Corchero JL; Domingo-Espín J; Villaverde A; Mangues R; Vázquez E
    Int J Nanomedicine; 2012; 7():4533-44. PubMed ID: 22923991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marked increase in anti-HIV activity, as well as inhibitory activity against HIV entry mediated by CXCR4, linked to enhancement of the binding ability of tachyplesin analogs to CXCR4.
    Xu Y; Tamamura H; Arakaki R; Nakashima H; Zhang X; Fujii N; Uchiyama T; Hattori T
    AIDS Res Hum Retroviruses; 1999 Mar; 15(5):419-27. PubMed ID: 10195751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacophore identification of a chemokine receptor (CXCR4) antagonist, T22 ([Tyr(5,12),Lys7]-polyphemusin II), which specifically blocks T cell-line-tropic HIV-1 infection.
    Tamamura H; Imai M; Ishihara T; Masuda M; Funakoshi H; Oyake H; Murakami T; Arakaki R; Nakashima H; Otaka A; Ibuka T; Waki M; Matsumoto A; Yamamoto N; Fujii N
    Bioorg Med Chem; 1998 Jul; 6(7):1033-41. PubMed ID: 9730240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory mechanism of the CXCR4 antagonist T22 against human immunodeficiency virus type 1 infection.
    Murakami T; Zhang TY; Koyanagi Y; Tanaka Y; Kim J; Suzuki Y; Minoguchi S; Tamamura H; Waki M; Matsumoto A; Fujii N; Shida H; Hoxie JA; Peiper SC; Yamamoto N
    J Virol; 1999 Sep; 73(9):7489-96. PubMed ID: 10438838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer-specific uptake of a liganded protein nanocarrier targeting aggressive CXCR4
    Céspedes MV; Unzueta U; Álamo P; Gallardo A; Sala R; Casanova I; Pavón MA; Mangues MA; Trías M; López-Pousa A; Villaverde A; Vázquez E; Mangues R
    Nanomedicine; 2016 Oct; 12(7):1987-1996. PubMed ID: 27085904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GSDMD-dependent pyroptotic induction by a multivalent CXCR4-targeted nanotoxin blocks colorectal cancer metastases.
    Sala R; Rioja-Blanco E; Serna N; Sánchez-García L; Álamo P; Alba-Castellón L; Casanova I; López-Pousa A; Unzueta U; Céspedes MV; Vázquez E; Villaverde A; Mangues R
    Drug Deliv; 2022 Dec; 29(1):1384-1397. PubMed ID: 35532120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitization of B16 tumor cells with a CXCR4 antagonist increases the efficacy of immunotherapy for established lung metastases.
    Lee CH; Kakinuma T; Wang J; Zhang H; Palmer DC; Restifo NP; Hwang ST
    Mol Cancer Ther; 2006 Oct; 5(10):2592-9. PubMed ID: 17041104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A study of anti-HIV compounds which interfere the virus entry via coreceptor CXCR4].
    Kanbara K; Fujii N; Nakashima H
    Kansenshogaku Zasshi; 2000 Mar; 74(3):237-44. PubMed ID: 10783578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T22-PE24-H6 Nanotoxin Selectively Kills CXCR4-High Expressing AML Patient Cells In Vitro and Potently Blocks Dissemination In Vivo.
    Núñez Y; Garcia-León A; Falgàs A; Serna N; Sánchez-García L; Garrido A; Sierra J; Gallardo A; Unzueta U; Vázquez E; Villaverde A; Mangues R; Casanova I
    Pharmaceutics; 2023 Feb; 15(3):. PubMed ID: 36986589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembling protein nanocarrier for selective delivery of cytotoxic polypeptides to CXCR4
    Rioja-Blanco E; Arroyo-Solera I; Álamo P; Casanova I; Gallardo A; Unzueta U; Serna N; Sánchez-García L; Quer M; Villaverde A; Vázquez E; Mangues R; Alba-Castellón L; León X
    Acta Pharm Sin B; 2022 May; 12(5):2578-2591. PubMed ID: 35646535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection.
    Murakami T; Nakajima T; Koyanagi Y; Tachibana K; Fujii N; Tamamura H; Yoshida N; Waki M; Matsumoto A; Yoshie O; Kishimoto T; Yamamoto N; Nagasawa T
    J Exp Med; 1997 Oct; 186(8):1389-93. PubMed ID: 9334379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-7]polyphemusin II): a possible inhibitor of virus-cell fusion.
    Nakashima H; Masuda M; Murakami T; Koyanagi Y; Matsumoto A; Fujii N; Yamamoto N
    Antimicrob Agents Chemother; 1992 Jun; 36(6):1249-55. PubMed ID: 1384424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the interaction of an anti-HIV peptide, T22 ([Tyr5, 12, Lys7]-polyphemusin II), with gp120 and CD4 by surface plasmon resonance.
    Tamamura H; Ishihara T; Otaka A; Murakami T; Ibuka T; Waki M; Matsumoto A; Yamamoto N; Fujii N
    Biochim Biophys Acta; 1996 Nov; 1298(1):37-44. PubMed ID: 8948487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synthetic [Tyr5,12,Lys7]-polyphemusin II peptide (T22) binds to the CD4 cell surface molecule.
    Weeks BS; Nomizu M; Otaka A; Weston CA; Okusu A; Tamamura H; Yamamoto N; Fujii N
    Biochem Biophys Res Commun; 1995 Oct; 215(2):626-31. PubMed ID: 7488001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Delivery of Antimicrobial Peptides in an Innovative, Slow-Release Pharmacological Formulation.
    Serna N; López-Laguna H; Aceituno P; Rojas-Peña M; Parladé E; Voltà-Durán E; Martínez-Torró C; Sánchez JM; Di Somma A; Carratalá JV; Livieri AL; Ferrer-Miralles N; Vázquez E; Unzueta U; Roher N; Villaverde A
    Pharmaceutics; 2023 Nov; 15(11):. PubMed ID: 38004610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Downsizing of an HIV-cell fusion inhibitor, T22 ([Tyr5,12, Lys7]-polyphemusin II), with the maintenance of anti-HIV activity and solution structure.
    Tamamura H; Waki M; Imai M; Otaka A; Ibuka T; Waki K; Miyamoto K; Matsumoto A; Murakami T; Nakashima H; Yamamoto N; Fujii N
    Bioorg Med Chem; 1998 Apr; 6(4):473-9. PubMed ID: 9597190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4
    Sala R; Sánchez-García L; Serna N; Céspedes MV; Casanova I; Roldán M; Sánchez-Chardi A; Unzueta U; Vázquez E; Mangues R; Villaverde A
    Acta Biomater; 2019 Nov; 99():426-432. PubMed ID: 31494293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.