These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 34834539)

  • 1. An Emerging Role for Epigenetics in Cerebral Palsy.
    Romero B; Robinson KG; Batish M; Akins RE
    J Pers Med; 2021 Nov; 11(11):. PubMed ID: 34834539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of basal lamina components in neuromotor synapses of children with spastic quadriplegic cerebral palsy.
    Robinson KG; Mendonca JL; Militar JL; Theroux MC; Dabney KW; Shah SA; Miller F; Akins RE
    PLoS One; 2013; 8(8):e70288. PubMed ID: 23976945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The orthopaedic aspect of spastic cerebral palsy.
    Skoutelis VC; Kanellopoulos AD; Kontogeorgakos VA; Dinopoulos A; Papagelopoulos PJ
    J Orthop; 2020; 22():553-558. PubMed ID: 33214743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Botulinum toxin A as an adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy.
    Wasiak J; Hoare B; Wallen M
    Cochrane Database Syst Rev; 2004 Oct; (4):CD003469. PubMed ID: 15495055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Methylation Analysis Reveals Distinct Patterns in Satellite Cell-Derived Myogenic Progenitor Cells of Subjects with Spastic Cerebral Palsy.
    Robinson KG; Marsh AG; Lee SK; Hicks J; Romero B; Batish M; Crowgey EL; Shrader MW; Akins RE
    J Pers Med; 2022 Nov; 12(12):. PubMed ID: 36556199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Botulinum toxin A as an adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy.
    Wasiak J; Hoare B; Wallen M
    Cochrane Database Syst Rev; 2004; (3):CD003469. PubMed ID: 15266487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment.
    Zhou J; Butler EE; Rose J
    Front Hum Neurosci; 2017; 11():103. PubMed ID: 28367118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy.
    van der Krogt MM; Bar-On L; Kindt T; Desloovere K; Harlaar J
    J Neuroeng Rehabil; 2016 Jul; 13(1):64. PubMed ID: 27423898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle and tendon morphology alterations in children and adolescents with mild forms of spastic cerebral palsy.
    Kruse A; Schranz C; Tilp M; Svehlik M
    BMC Pediatr; 2018 May; 18(1):156. PubMed ID: 29743109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel transcriptional profile in wrist muscles from cerebral palsy patients.
    Smith LR; Pontén E; Hedström Y; Ward SR; Chambers HG; Subramaniam S; Lieber RL
    BMC Med Genomics; 2009 Jul; 2():44. PubMed ID: 19602279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interventional Approaches to Pain and Spasticity Related to Cerebral Palsy.
    Peck J; Urits I; Kassem H; Lee C; Robinson W; Cornett EM; Berger AA; Herman J; Jung JW; Kaye AD; Viswanath O
    Psychopharmacol Bull; 2020 Oct; 50(4 Suppl 1):108-120. PubMed ID: 33633421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative evaluation for spasticity of calf muscle after botulinum toxin injection in patients with cerebral palsy: a pilot study.
    Lin YC; Lin IL; Chou TF; Lee HM
    J Neuroeng Rehabil; 2016 Mar; 13():25. PubMed ID: 26969526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic machine learning: utilizing DNA methylation patterns to predict spastic cerebral palsy.
    Crowgey EL; Marsh AG; Robinson KG; Yeager SK; Akins RE
    BMC Bioinformatics; 2018 Jun; 19(1):225. PubMed ID: 29925314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal Muscle in Cerebral Palsy: From Belly to Myofibril.
    Howard JJ; Herzog W
    Front Neurol; 2021; 12():620852. PubMed ID: 33679586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children.
    Fox AS; Carty CP; Modenese L; Barber LA; Lichtwark GA
    Gait Posture; 2018 Mar; 61():169-175. PubMed ID: 29353741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of muscle morphology to hip displacement in cerebral palsy: a pilot study investigating changes intrinsic to the sarcomere.
    Larkin-Kaiser KA; Howard JJ; Leonard T; Joumaa V; Gauthier L; Logan K; Orlik B; El-Hawary R; Herzog W
    J Orthop Surg Res; 2019 Jun; 14(1):187. PubMed ID: 31227002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramuscular injection of collagenase clostridium histolyticum may decrease spastic muscle contracture for children with cerebral palsy.
    Howard JJ; Huntley JS; Graham HK; Herzog WL
    Med Hypotheses; 2019 Jan; 122():126-128. PubMed ID: 30593395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length.
    Smith LR; Lee KS; Ward SR; Chambers HG; Lieber RL
    J Physiol; 2011 May; 589(Pt 10):2625-39. PubMed ID: 21486759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal inhibition and motor function in adults with spastic cerebral palsy.
    Condliffe EG; Jeffery DT; Emery DJ; Gorassini MA
    J Physiol; 2016 May; 594(10):2691-705. PubMed ID: 26842905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Walking Technologies to Improve Gait in Cerebral Palsy: Multichannel Neuromuscular Stimulation.
    Rose J; Cahill-Rowley K; Butler EE
    Artif Organs; 2017 Nov; 41(11):E233-E239. PubMed ID: 29148138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.