These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 34834674)
1. Production of Genistein in Malla A; Shanmugaraj B; Sharma A; Ramalingam S Plants (Basel); 2021 Oct; 10(11):. PubMed ID: 34834674 [TBL] [Abstract][Full Text] [Related]
2. Metabolic Engineering of Isoflavonoid Biosynthesis by Expressing Malla A; Shanmugaraj B; Srinivasan B; Sharma A; Ramalingam S Plants (Basel); 2020 Dec; 10(1):. PubMed ID: 33383660 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of isoflavone genistein in Brassica napus with soybean isoflavone synthase. Li X; Qin JC; Wang QY; Wu X; Lang CY; Pan HY; Gruber MY; Gao MJ Plant Cell Rep; 2011 Aug; 30(8):1435-42. PubMed ID: 21409550 [TBL] [Abstract][Full Text] [Related]
4. Expression and functional characterization of a white clover isoflavone synthase in tobacco. Franzmayr BK; Rasmussen S; Fraser KM; Jameson PE Ann Bot; 2012 Nov; 110(6):1291-301. PubMed ID: 22915577 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. Sreevidya VS; Srinivasa Rao C; Sullia SB; Ladha JK; Reddy PM J Exp Bot; 2006; 57(9):1957-69. PubMed ID: 16690627 [TBL] [Abstract][Full Text] [Related]
6. Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Yu O; Jung W; Shi J; Croes RA; Fader GM; McGonigle B; Odell JT Plant Physiol; 2000 Oct; 124(2):781-94. PubMed ID: 11027726 [TBL] [Abstract][Full Text] [Related]
7. Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway. Liu R; Hu Y; Li J; Lin Z Metab Eng; 2007 Jan; 9(1):1-7. PubMed ID: 17029902 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome analysis of Pueraria candollei var. mirifica for gene discovery in the biosyntheses of isoflavones and miroestrol. Suntichaikamolkul N; Tantisuwanichkul K; Prombutara P; Kobtrakul K; Zumsteg J; Wannachart S; Schaller H; Yamazaki M; Saito K; De-Eknamkul W; Vimolmangkang S; Sirikantaramas S BMC Plant Biol; 2019 Dec; 19(1):581. PubMed ID: 31878891 [TBL] [Abstract][Full Text] [Related]
9. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Zhang P; Du H; Wang J; Pu Y; Yang C; Yan R; Yang H; Cheng H; Yu D Plant Biotechnol J; 2020 Jun; 18(6):1384-1395. PubMed ID: 31769589 [TBL] [Abstract][Full Text] [Related]
10. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Ralston L; Subramanian S; Matsuno M; Yu O Plant Physiol; 2005 Apr; 137(4):1375-88. PubMed ID: 15778463 [TBL] [Abstract][Full Text] [Related]
11. Systematic Engineering of Genistein Biosynthetic Pathway through Genetic Regulators and Combinatorial Enzyme Screening. Hwang Y; Hwang HG; Lee JY; Jung GY J Agric Food Chem; 2024 Mar; 72(11):5842-5848. PubMed ID: 38441872 [TBL] [Abstract][Full Text] [Related]
12. Inducible De Novo Biosynthesis of Isoflavonoids in Soybean Leaves by Spodoptera litura Derived Elicitors: Tracer Techniques Aided by High Resolution LCMS. Nakata R; Kimura Y; Aoki K; Yoshinaga N; Teraishi M; Okumoto Y; Huffaker A; Schmelz EA; Mori N J Chem Ecol; 2016 Dec; 42(12):1226-1236. PubMed ID: 27826811 [TBL] [Abstract][Full Text] [Related]
13. Genistein-Specific G6DT Gene for the Inducible Production of Wighteone in Lotus japonicus. Liu J; Jiang W; Xia Y; Wang X; Shen G; Pang Y Plant Cell Physiol; 2018 Jan; 59(1):128-141. PubMed ID: 29140457 [TBL] [Abstract][Full Text] [Related]
14. Elucidation of the core betalain biosynthesis pathway in Amaranthus tricolor. Chang YC; Chiu YC; Tsao NW; Chou YL; Tan CM; Chiang YH; Liao PC; Lee YC; Hsieh LC; Wang SY; Yang JY Sci Rep; 2021 Mar; 11(1):6086. PubMed ID: 33731735 [TBL] [Abstract][Full Text] [Related]
15. Ethylene Induced a High Accumulation of Dietary Isoflavones and Expression of Isoflavonoid Biosynthetic Genes in Soybean (Glycine max) Leaves. Yuk HJ; Song YH; Curtis-Long MJ; Kim DW; Woo SG; Lee YB; Uddin Z; Kim CY; Park KH J Agric Food Chem; 2016 Oct; 64(39):7315-7324. PubMed ID: 27626287 [TBL] [Abstract][Full Text] [Related]
16. Accumulation of isoflavone genistin in transgenic tomato plants overexpressing a soybean isoflavone synthase gene. Shih CH; Chen Y; Wang M; Chu IK; Lo C J Agric Food Chem; 2008 Jul; 56(14):5655-61. PubMed ID: 18540614 [TBL] [Abstract][Full Text] [Related]
17. New dual functional Xia Y; He C; Yan S; Liu J; Huang H; Li X; Su Q; Jiang W; Pang Y Synth Syst Biotechnol; 2023 Mar; 8(1):157-167. PubMed ID: 36714060 [No Abstract] [Full Text] [Related]
18. Ultraviolet irradiation induces accumulation of isoflavonoids and transcription of genes of enzymes involved in the calycosin-7-O-β-d-glucoside pathway in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao. Xu RY; Nan P; Yang Y; Pan H; Zhou T; Chen J Physiol Plant; 2011 Jul; 142(3):265-73. PubMed ID: 21438882 [TBL] [Abstract][Full Text] [Related]
19. Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage. Singh S; Agrawal M; Agrawal SB Photosynth Res; 2013 Jul; 115(2-3):123-38. PubMed ID: 23686471 [TBL] [Abstract][Full Text] [Related]
20. Genetic and metabolic engineering of isoflavonoid biosynthesis. Du H; Huang Y; Tang Y Appl Microbiol Biotechnol; 2010 May; 86(5):1293-312. PubMed ID: 20309543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]