BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34834773)

  • 1. Root Trait Variation in Lentil (
    Priya S; Bansal R; Kumar G; Dikshit HK; Kumari J; Pandey R; Singh AK; Tripathi K; Singh N; Kumari NKP; Kumar S; Kumar A
    Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotypic variation in root architectural traits under contrasting phosphorus levels in Mediterranean and Indian origin lentil genotypes.
    Aski M; Mehra R; Mishra GP; Singh D; Yadav P; Rai N; Reddy VRP; Mb AK; Pandey R; Singh MP; Gayacharan ; Bansal R; Tripathi K; Udupa SM; Kumar S; Sarker A; Dikshit HK
    PeerJ; 2022; 10():e12766. PubMed ID: 35291490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Quantitative Trait Loci Controlling Root and Shoot Traits Associated with Drought Tolerance in a Lentil (Lens culinaris Medik.) Recombinant Inbred Line Population.
    Idrissi O; Udupa SM; De Keyser E; McGee RJ; Coyne CJ; Saha GC; Muehlbauer FJ; Van Damme P; De Riek J
    Front Plant Sci; 2016; 7():1174. PubMed ID: 27602034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes.
    Biju S; Fuentes S; Gupta D
    Plant Physiol Biochem; 2018 Jun; 127():11-24. PubMed ID: 29544209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress.
    Singh D; Singh CK; Taunk J; Tomar RS; Chaturvedi AK; Gaikwad K; Pal M
    BMC Genomics; 2017 Feb; 18(1):206. PubMed ID: 28241862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits.
    Morgil H; Tardu M; Cevahir G; Kavakli İH
    Funct Integr Genomics; 2019 Sep; 19(5):715-727. PubMed ID: 31001704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Temperature and Drought Stress Effects on Growth, Yield and Nutritional Quality with Transpiration Response to Vapor Pressure Deficit in Lentil.
    El Haddad N; Choukri H; Ghanem ME; Smouni A; Mentag R; Rajendran K; Hejjaoui K; Maalouf F; Kumar S
    Plants (Basel); 2021 Dec; 11(1):. PubMed ID: 35009098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat and Drought Stress Impact on Phenology, Grain Yield, and Nutritional Quality of Lentil (
    Choukri H; Hejjaoui K; El-Baouchi A; El Haddad N; Smouni A; Maalouf F; Thavarajah D; Kumar S
    Front Nutr; 2020; 7():596307. PubMed ID: 33330596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Drought, Heat and Their Interaction on the Growth, Yield and Photosynthetic Function of Lentil (
    Sehgal A; Sita K; Kumar J; Kumar S; Singh S; Siddique KHM; Nayyar H
    Front Plant Sci; 2017; 8():1776. PubMed ID: 29089954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root Traits, Nodulation and Root Distribution in Soil for Five Wild Lentil Species and
    Gorim LY; Vandenberg A
    Front Plant Sci; 2017; 8():1632. PubMed ID: 28993782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of Lentil (
    Aktar-Uz-Zaman M; Haque MA; Sarker A; Alam MA; Rohman MM; Ali MO; Alkhateeb MA; Gaber A; Hossain A
    Life (Basel); 2022 Oct; 12(11):. PubMed ID: 36362874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of High-Temperature Tolerant Lentil (
    Sita K; Sehgal A; Kumar J; Kumar S; Singh S; Siddique KHM; Nayyar H
    Front Plant Sci; 2017; 8():744. PubMed ID: 28579994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The study of seed yield and seed yield components of lentil (Lens culinaris Medik) under normal and drought stress conditions.
    Salehi M; Haghnazari A; Shekari F; Faramarzi A
    Pak J Biol Sci; 2008 Mar; 11(5):758-62. PubMed ID: 18819573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and morpho-physiological analyses of the tolerance and recovery mechanisms in seedling stage spring wheat under drought stress.
    Ahmed AAM; Dawood MFA; Elfarash A; Mohamed EA; Hussein MY; Börner A; Sallam A
    Front Genet; 2022; 13():1010272. PubMed ID: 36303538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Wild Lentil Species as Genetic Resources to Improve Drought Tolerance in Cultivated Lentil.
    Gorim LY; Vandenberg A
    Front Plant Sci; 2017; 8():1129. PubMed ID: 28706524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon modulates nitro-oxidative homeostasis along with the antioxidant metabolism to promote drought stress tolerance in lentil plants.
    Biju S; Fuentes S; Gupta D
    Physiol Plant; 2021 Jun; 172(2):1382-1398. PubMed ID: 33887059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conferring of drought tolerance in wheat (
    Ahmed HGM; Zeng Y; Shah AN; Yar MM; Ullah A; Ali M
    Front Plant Sci; 2022; 13():961049. PubMed ID: 35937360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and molecular characterisation for high temperature stress in Lens culinaris.
    Kumar J; Basu PS; Gupta S; Dubey S; Sen Gupta D; Singh NP
    Funct Plant Biol; 2018 Mar; 45(4):474-487. PubMed ID: 32290986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative morpho-physiological and biochemical responses of lentil and grass pea genotypes under water stress.
    Talukdar D
    J Nat Sci Biol Med; 2013 Jul; 4(2):396-402. PubMed ID: 24082740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morpho-physiological and molecular characterization of drought tolerance traits in
    Abdelmoghny AM; Raghavendra KP; Sheeba JA; Santosh HB; Meshram JH; Singh SB; Kranthi KR; Waghmare VN
    Physiol Mol Biol Plants; 2020 Dec; 26(12):2339-2353. PubMed ID: 33424151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.