These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34834835)

  • 41. PhenoForecaster: A software package for the prediction of flowering phenology.
    Park I; Jones A; Mazer SJ
    Appl Plant Sci; 2019 Mar; 7(3):e01230. PubMed ID: 30937222
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep Learning in Plant Phenological Research: A Systematic Literature Review.
    Katal N; Rzanny M; Mäder P; Wäldchen J
    Front Plant Sci; 2022; 13():805738. PubMed ID: 35371160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extirpated prairie species demonstrate more variable phenological responses to warming than extant congeners.
    Zettlemoyer MA; Renaldi K; Muzyka MD; Lau JA
    Am J Bot; 2021 Jun; 108(6):958-970. PubMed ID: 34133754
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phenological plasticity is a poor predictor of subalpine plant population performance following experimental climate change.
    Block S; Alexander JM; Levine JM
    Oikos; 2020 Feb; 129(2):184-193. PubMed ID: 32001946
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Harnessing Large-Scale Herbarium Image Datasets Through Representation Learning.
    Walker BE; Tucker A; Nicolson N
    Front Plant Sci; 2021; 12():806407. PubMed ID: 35095977
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phenological responses to climate change do not exhibit phylogenetic signal in a subalpine plant community.
    CaraDonna PJ; Inouye DW
    Ecology; 2015 Feb; 96(2):355-61. PubMed ID: 26240857
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Community-wide changes in intertaxonomic temporal co-occurrence resulting from phenological shifts.
    Hua F; Hu J; Liu Y; Giam X; Lee TM; Luo H; Wu J; Liang Q; Zhao J; Long X; Pang H; Wang B; Liang W; Zhang Z; Gao X; Zhu J
    Glob Chang Biol; 2016 May; 22(5):1746-54. PubMed ID: 26680152
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phenological responses of 215 moth species to interannual climate variation in the Pacific Northwest from 1895 through 2013.
    Maurer JA; Shepard JH; Crabo LG; Hammond PC; Zack RS; Peterson MA
    PLoS One; 2018; 13(9):e0202850. PubMed ID: 30208046
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phenology models using herbarium specimens are only slightly improved by using finer-scale stages of reproduction.
    Ellwood ER; Primack RB; Willis CG; HilleRisLambers J
    Appl Plant Sci; 2019 Mar; 7(3):e01225. PubMed ID: 30937218
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows.
    Li L; Li Z; Cadotte MW; Jia P; Chen G; Jin LS; Du G
    Oecologia; 2016 Oct; 182(2):419-28. PubMed ID: 27351544
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa.
    Mazer SJ; Travers SE; Cook BI; Davies TJ; Bolmgren K; Kraft NJ; Salamin N; Inouye DW
    Am J Bot; 2013 Jul; 100(7):1381-97. PubMed ID: 23752756
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enabling automated herbarium sheet image post-processing using neural network models for color reference chart detection.
    Ledesma DA; Powell CA; Shaw J; Qin H
    Appl Plant Sci; 2020 Mar; 8(3):e11331. PubMed ID: 32185122
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Long-term trends mask variation in the direction and magnitude of short-term phenological shifts.
    Iler AM; Høye TT; Inouye DW; Schmidt NM
    Am J Bot; 2013 Jul; 100(7):1398-406. PubMed ID: 23660568
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Digital herbarium archives as a spatially extensive, taxonomically discriminate phenological record; a comparison to MODIS satellite imagery.
    Park IW
    Int J Biometeorol; 2012 Nov; 56(6):1179-82. PubMed ID: 22350421
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant phenological responses to experimental warming-A synthesis.
    Stuble KL; Bennion LD; Kuebbing SE
    Glob Chang Biol; 2021 Sep; 27(17):4110-4124. PubMed ID: 33993588
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reproductive phenology of 233 species from four herbaceous-shrubby communities in the Gran Sabana Plateau of Venezuela.
    Ramírez N; Briceño H
    AoB Plants; 2011; 2011():plr014. PubMed ID: 22476484
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An examination of climate-driven flowering-time shifts at large spatial scales over 153 years in a common weedy annual.
    Berg CS; Brown JL; Weber JJ
    Am J Bot; 2019 Nov; 106(11):1435-1443. PubMed ID: 31675107
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Specialization and phenological synchrony of plant-pollinator interactions along an altitudinal gradient.
    Benadi G; Hovestadt T; Poethke HJ; Blüthgen N
    J Anim Ecol; 2014 May; 83(3):639-50. PubMed ID: 24219131
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Climate drives shifts in grass reproductive phenology across the western USA.
    Munson SM; Long AL
    New Phytol; 2017 Mar; 213(4):1945-1955. PubMed ID: 27870060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.