These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34834835)

  • 61. One man, 73 years, and 25 species. Evaluating phenological responses using a lifelong study of first flowering dates.
    Bolmgren K; Vanhoenacker D; Miller-Rushing AJ
    Int J Biometeorol; 2013 May; 57(3):367-75. PubMed ID: 22744801
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Going deeper in the automated identification of Herbarium specimens.
    Carranza-Rojas J; Goeau H; Bonnet P; Mata-Montero E; Joly A
    BMC Evol Biol; 2017 Aug; 17(1):181. PubMed ID: 28797242
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Historical changes in flowering phenology are governed by temperature × precipitation interactions in a widespread perennial herb in western North America.
    Matthews ER; Mazer SJ
    New Phytol; 2016 Apr; 210(1):157-67. PubMed ID: 26595165
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Applications of deep convolutional neural networks to digitized natural history collections.
    Schuettpelz E; Frandsen PB; Dikow RB; Brown A; Orli S; Peters M; Metallo A; Funk VA; Dorr LJ
    Biodivers Data J; 2017; (5):e21139. PubMed ID: 29200929
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought.
    Gugger S; Kesselring H; Stöcklin J; Hamann E
    Ann Bot; 2015 Nov; 116(6):953-62. PubMed ID: 26424784
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Phenological Response in the Trophic Levels to Climate Change in Korea.
    Kim M; Lee S; Lee H; Lee S
    Int J Environ Res Public Health; 2021 Jan; 18(3):. PubMed ID: 33530515
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants.
    Munson SM; Sher AA
    Am J Bot; 2015 Aug; 102(8):1268-76. PubMed ID: 26290550
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast China.
    Du Y; Chen J; Willis CG; Zhou Z; Liu T; Dai W; Zhao Y; Ma K
    Ecol Evol; 2017 Sep; 7(17):6747-6757. PubMed ID: 28904756
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Grasshopper species' seasonal timing underlies shifts in phenological overlap in response to climate gradients, variability and change.
    Buckley LB; Graham SI; Nufio CR
    J Anim Ecol; 2021 May; 90(5):1252-1263. PubMed ID: 33630307
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Demographic effects of phenological variation in natural populations of two pond-breeding salamanders.
    Anderson TL; Earl JE; Hocking DJ; Osbourn MS; Rittenhouse TAG; Johnson JR
    Oecologia; 2021 Aug; 196(4):1073-1083. PubMed ID: 34338861
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Climate data and flowering times for 450 species from 1844 deepen the record of phenological change in southern Germany.
    Renner SS; Wesche M; Zohner CM
    Am J Bot; 2021 Apr; 108(4):711-717. PubMed ID: 33901306
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Exploring differences in spatial patterns and temporal trends of phenological models at continental scale using gridded temperature time-series.
    Mehdipoor H; Zurita-Milla R; Augustijn EW; Izquierdo-Verdiguier E
    Int J Biometeorol; 2020 Mar; 64(3):409-421. PubMed ID: 31720857
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Confounding effects of spatial variation on shifts in phenology.
    de Keyzer CW; Rafferty NE; Inouye DW; Thomson JD
    Glob Chang Biol; 2017 May; 23(5):1783-1791. PubMed ID: 27550575
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High levels of phenological asynchrony between specialized pollinators and plants with short flowering phases.
    Maglianesi MA; Hanson P; Brenes E; Benadi G; Schleuning M; Dalsgaard B
    Ecology; 2020 Nov; 101(11):e03162. PubMed ID: 33460104
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Herbarium-based measurements reliably estimate three functional traits.
    Perez TM; Rodriguez J; Mason Heberling J
    Am J Bot; 2020 Oct; 107(10):1457-1464. PubMed ID: 32945535
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Manipulation of flowering time: phenological integration and maternal effects.
    Galloway LF; Burgess KS
    Ecology; 2009 Aug; 90(8):2139-48. PubMed ID: 19739376
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Changes in plant collection practices from the 16th to 21st centuries: implications for the use of herbarium specimens in global change research.
    Kozlov MV; Sokolova IV; Zverev V; Zvereva EL
    Ann Bot; 2021 Jun; 127(7):865-873. PubMed ID: 33556168
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset.
    Czernecki B; Nowosad J; Jabłońska K
    Int J Biometeorol; 2018 Jul; 62(7):1297-1309. PubMed ID: 29644431
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Advancing frost dates have reduced frost risk among most North American angiosperms since 1980.
    Park IW; Ramirez-Parada T; Mazer SJ
    Glob Chang Biol; 2021 Jan; 27(1):165-176. PubMed ID: 33030240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.