These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 34834887)

  • 1. Transformation of European Ash (
    Hebda A; Liszka A; Zgłobicki P; Nawrot-Chorabik K; Lyczakowski JJ
    Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic prediction of resistance to
    Meger J; Ulaszewski B; Pałucka M; Kozioł C; Burczyk J
    Evol Appl; 2024 May; 17(5):e13694. PubMed ID: 38707993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong antagonism of an endophyte of
    Demir Ö; Schulz B; Rabsch L; Steinert M; Surup F
    Appl Environ Microbiol; 2024 Jun; 90(6):e0066524. PubMed ID: 38814060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.
    Sambles CM; Salmon DL; Florance H; Howard TP; Smirnoff N; Nielsen LR; McKinney LV; Kjær ED; Buggs RJA; Studholme DJ; Grant M
    Sci Data; 2017 Dec; 4():170190. PubMed ID: 29257137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profiling of Fraxinus excelsior genotypes infested by emerald ash borer.
    Doonan JM; Kosawang C; Eisenring M; Ladd T; Roe AD; Budde KB; Jørgensen HJL; Queloz V; Gossner MM; Nielsen LR
    Sci Data; 2023 Oct; 10(1):680. PubMed ID: 37798274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular markers for tolerance of European ash (Fraxinus excelsior) to dieback disease identified using Associative Transcriptomics.
    Harper AL; McKinney LV; Nielsen LR; Havlickova L; Li Y; Trick M; Fraser F; Wang L; Fellgett A; Sollars ES; Janacek SH; Downie JA; Buggs RJ; Kjær ED; Bancroft I
    Sci Rep; 2016 Jan; 6():19335. PubMed ID: 26757823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile method for assessing pathogenicity of
    Orton ES; Clarke M; Brasier CM; Webber JF; Brown JKM
    For Pathol; 2019 Apr; 49(2):e12484. PubMed ID: 31130819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape.
    Semizer-Cuming D; Kjær ED; Finkeldey R
    PLoS One; 2017; 12(10):e0186757. PubMed ID: 29053740
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Baral HO; Bemmann M
    Mycology; 2014 Oct; 5(4):228-290. PubMed ID: 25544935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ash Dieback and Its Impact in Near-Natural Forest Remnants - A Plant Community-Based Inventory.
    Erfmeier A; Haldan KL; Beckmann LM; Behrens M; Rotert J; Schrautzer J
    Front Plant Sci; 2019; 10():658. PubMed ID: 31178880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Will natural resistance result in populations of ash trees remaining in British woodlands after a century of ash dieback disease?
    Evans MR
    R Soc Open Sci; 2019 Aug; 6(8):190908. PubMed ID: 31598257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic resources of common ash (Fraxinus excelsior L.) in Poland.
    Meger J; Kozioł C; Pałucka M; Burczyk J; Chybicki IJ
    BMC Plant Biol; 2024 Mar; 24(1):186. PubMed ID: 38481155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible Biological Control of Ash Dieback Using the Mycoparasite Hymenoscyphus Fraxineus Mitovirus 2.
    Shamsi W; Mittelstrass J; Ulrich S; Kondo H; Rigling D; Prospero S
    Phytopathology; 2024 May; 114(5):1020-1027. PubMed ID: 38114080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungal succession in decomposing ash leaves colonized by the ash dieback pathogen
    Kosawang C; Børja I; Herrero ML; Nagy NE; Nielsen LR; Solheim H; Timmermann V; Hietala AM
    Front Microbiol; 2023; 14():1154344. PubMed ID: 37125194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large invertebrate decomposers contribute to faster leaf litter decomposition in
    Dahlsjö CAL; Atkins T; Malhi Y
    Heliyon; 2024 Mar; 10(5):e27228. PubMed ID: 38495134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presence of natural genetic resistance in Fraxinus excelsior (Oleraceae) to Chalara fraxinea (Ascomycota): an emerging infectious disease.
    McKinney LV; Nielsen LR; Hansen JK; Kjær ED
    Heredity (Edinb); 2011 May; 106(5):788-97. PubMed ID: 20823903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal pattern of lesion development in diseased Fraxinus excelsior infected by Hymenoscyphus pseudoalbidus.
    Bengtsson SB; Barklund P; von Brömssen C; Stenlid J
    PLoS One; 2014; 9(4):e76429. PubMed ID: 24759550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagule Pressure Build-Up by the Invasive
    Hietala AM; Børja I; Solheim H; Nagy NE; Timmermann V
    Front Plant Sci; 2018; 9():1087. PubMed ID: 30105041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tools for pathogen genetic surveillance: Lessons from the ash dieback invasion of Europe.
    Peers JA; Leggett RM; Clark MD; McMullan M
    PLoS Pathog; 2024 May; 20(5):e1012182. PubMed ID: 38781155
    [No Abstract]   [Full Text] [Related]  

  • 20. A phoenix glimmers within the ashes: generalized defensive traits suggest hope for plants under attack by invasive pests.
    Johnson TD; Whitehill JGA
    New Phytol; 2023 Nov; 240(3):912-914. PubMed ID: 37632211
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.