BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34835420)

  • 1. Composition and Dominance of Edible and Inedible Phytoplankton Predict Responses of Baltic Sea Summer Communities to Elevated Temperature and CO
    Paul C; Sommer U; Matthiessen B
    Microorganisms; 2021 Nov; 9(11):. PubMed ID: 34835420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited evidence for common interannual trends in Baltic Sea summer phytoplankton biomass.
    Griffiths JR; Lehtinen S; Suikkanen S; Winder M
    PLoS One; 2020; 15(4):e0231690. PubMed ID: 32353002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warming and Acidification Effects on Planktonic Heterotrophic Pico- and Nanoflagellates in a Mesocosm Experiment.
    Moustaka-Gouni M; Kormas KA; Scotti M; Vardaka E; Sommer U
    Protist; 2016 Aug; 167(4):389-410. PubMed ID: 27472657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of Microbial Communities to Changing Climate Conditions During Summer Cyanobacterial Blooms in the Baltic Sea.
    Berner C; Bertos-Fortis M; Pinhassi J; Legrand C
    Front Microbiol; 2018; 9():1562. PubMed ID: 30090087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change and eutrophication induced shifts in northern summer plankton communities.
    Suikkanen S; Pulina S; Engström-Öst J; Lehtiniemi M; Lehtinen S; Brutemark A
    PLoS One; 2013; 8(6):e66475. PubMed ID: 23776676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morpho-Functional Traits Reveal Differences in Size Fractionated Phytoplankton Communities but Do Not Significantly Affect Zooplankton Grazing.
    Titocci J; Bon M; Fink P
    Microorganisms; 2022 Jan; 10(1):. PubMed ID: 35056631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined effects of elevated carbon dioxide and temperature on phytoplankton-zooplankton link: A multi-influence of climate change on freshwater planktonic communities.
    Li W; Xu X; Yao J; Tanaka N; Nishimura O; Ma H
    Sci Total Environ; 2019 Mar; 658():1175-1185. PubMed ID: 30677981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of phytoplankton community structure and biomass determined by HPLC-CHEMTAX and microscopic methods during summer and autumn in the central Bohai Sea, China.
    Pan H; Li A; Cui Z; Ding D; Qu K; Zheng Y; Lu L; Jiang T; Jiang T
    Mar Pollut Bull; 2020 Jun; 155():111172. PubMed ID: 32469782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification.
    Eggers SL; Lewandowska AM; Barcelos E Ramos J; Blanco-Ameijeiras S; Gallo F; Matthiessen B
    Glob Chang Biol; 2014 Mar; 20(3):713-23. PubMed ID: 24115206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rising levels of temperature and CO
    Zhang Y; Wang T; Li H; Bao N; Hall-Spencer JM; Gao K
    Mar Environ Res; 2018 Oct; 141():159-166. PubMed ID: 30180993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms.
    Bergen B; Endres S; Engel A; Zark M; Dittmar T; Sommer U; Jürgens K
    Environ Microbiol; 2016 Dec; 18(12):4579-4595. PubMed ID: 27690275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Five Years of Experimental Warming Increases the Biodiversity and Productivity of Phytoplankton.
    Yvon-Durocher G; Allen AP; Cellamare M; Dossena M; Gaston KJ; Leitao M; Montoya JM; Reuman DC; Woodward G; Trimmer M
    PLoS Biol; 2015 Dec; 13(12):e1002324. PubMed ID: 26680314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grazing Induced Shifts in Phytoplankton Cell Size Explain the Community Response to Nutrient Supply.
    Charalampous E; Matthiessen B; Sommer U
    Microorganisms; 2021 Nov; 9(12):. PubMed ID: 34946042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basin-specific changes in filamentous cyanobacteria community composition across four decades in the Baltic Sea.
    Olofsson M; Suikkanen S; Kobos J; Wasmund N; Karlson B
    Harmful Algae; 2020 Jan; 91():101685. PubMed ID: 32057344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and spatial variability of phytoplankton monitored by a combination of monitoring buoys, pigment analysis and fast screening microscopy in the Fehmarn Belt Estuary.
    Schlüter L; Møhlenberg F; Kaas H
    Environ Monit Assess; 2014 Aug; 186(8):5167-84. PubMed ID: 24788839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria.
    Rangel LM; Silva LHS; Faassen EJ; Lürling M; Ger KA
    Toxins (Basel); 2020 Jul; 12(7):. PubMed ID: 32708114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MERIS observations of phytoplankton phenology in the Baltic Sea.
    Zhang D; Lavender S; Muller JP; Walton D; Zou X; Shi F
    Sci Total Environ; 2018 Nov; 642():447-462. PubMed ID: 29908504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton.
    Sommer U; Aberle N; Engel A; Hansen T; Lengfellner K; Sandow M; Wohlers J; Zöllner E; Riebesell U
    Oecologia; 2007 Jan; 150(4):655-67. PubMed ID: 17048013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years.
    Jiang Z; Liu J; Chen J; Chen Q; Yan X; Xuan J; Zeng J
    Water Res; 2014 May; 54():1-11. PubMed ID: 24531075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do marine phytoplankton follow Bergmann's rule sensu lato?
    Sommer U; Peter KH; Genitsaris S; Moustaka-Gouni M
    Biol Rev Camb Philos Soc; 2017 May; 92(2):1011-1026. PubMed ID: 27028628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.