These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34835420)

  • 61. Decrease in water clarity of the southern and central North Sea during the 20th century.
    Capuzzo E; Stephens D; Silva T; Barry J; Forster RM
    Glob Chang Biol; 2015 Jun; 21(6):2206-14. PubMed ID: 25640640
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Long-term development of inorganic nutrients and chlorophyll alpha in the open northern Baltic Sea.
    Fleming-Lehtinen V; Laamanen M; Kuosa H; Haahti H; Olsonen R
    Ambio; 2008 Mar; 37(2):86-92. PubMed ID: 18488550
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Unscrambling Cyanobacteria Community Dynamics Related to Environmental Factors.
    Bertos-Fortis M; Farnelid HM; Lindh MV; Casini M; Andersson A; Pinhassi J; Legrand C
    Front Microbiol; 2016; 7():625. PubMed ID: 27242679
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Interactive effect of warming, nitrogen and phosphorus limitation on phytoplankton cell size.
    Peter KH; Sommer U
    Ecol Evol; 2015 Mar; 5(5):1011-24. PubMed ID: 25798219
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Grazing effect of flagellates on bacteria in response to phosphate addition in the oligotrophic Cretan Sea, NE Mediterranean.
    Oikonomou A; Livanou E; Mandalakis M; Lagaria A; Psarra S
    FEMS Microbiol Ecol; 2020 Jun; 96(6):. PubMed ID: 32383769
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Responses of marine phytoplankton communities to environmental changes: New insights from a niche classification scheme.
    Xiao W; Laws EA; Xie Y; Wang L; Liu X; Chen J; Chen B; Huang B
    Water Res; 2019 Dec; 166():115070. PubMed ID: 31525510
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Herbivorous protist growth and grazing rates at in situ and artificially elevated temperatures during an Arctic phytoplankton spring bloom.
    Menden-Deuer S; Lawrence C; Franzè G
    PeerJ; 2018; 6():e5264. PubMed ID: 30057859
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Patterns of phytoplankton composition in coastal lakes differed by connectivity with the Baltic Sea.
    Obolewski K; Glińska-Lewczuk K; Bąkowska M; Szymańska M; Mrozińska N
    Sci Total Environ; 2018 Aug; 631-632():951-961. PubMed ID: 29728006
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The structure of winter phytoplankton in Lake Nero, Russia, a hypertrophic lake dominated by Planktothrix-like Cyanobacteria.
    Babanazarova O; Sidelev S; Schischeleva S
    Aquat Biosyst; 2013 Sep; 9(1):18. PubMed ID: 24079446
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Niche separation of Baltic Sea cyanobacteria during bloom events by species interactions and autecological preferences.
    Eigemann F; Schwartke M; Schulz-Vogt H
    Harmful Algae; 2018 Feb; 72():65-73. PubMed ID: 29413385
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Warming and CO
    Cabrerizo MJ; Álvarez-Manzaneda MI; León-Palmero E; Guerrero-Jiménez G; de Senerpont Domis LN; Teurlincx S; González-Olalla JM
    Water Res; 2020 Apr; 173():115579. PubMed ID: 32059127
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Marked changes in diatom and dinoflagellate biomass, composition and seasonality in the Belgian Part of the North Sea between the 1970s and 2000s.
    Nohe A; Goffin A; Tyberghein L; Lagring R; De Cauwer K; Vyverman W; Sabbe K
    Sci Total Environ; 2020 May; 716():136316. PubMed ID: 32036126
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Meta-omic analyses of Baltic Sea cyanobacteria: diversity, community structure and salt acclimation.
    Celepli N; Sundh J; Ekman M; Dupont CL; Yooseph S; Bergman B; Ininbergs K
    Environ Microbiol; 2017 Feb; 19(2):673-686. PubMed ID: 27871145
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Consequences of increased temperature and acidification on bacterioplankton community composition during a mesocosm spring bloom in the Baltic Sea.
    Lindh MV; Riemann L; Baltar F; Romero-Oliva C; Salomon PS; Granéli E; Pinhassi J
    Environ Microbiol Rep; 2013 Apr; 5(2):252-62. PubMed ID: 23584969
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of sea surface warming on marine plankton.
    Lewandowska AM; Boyce DG; Hofmann M; Matthiessen B; Sommer U; Worm B
    Ecol Lett; 2014 May; 17(5):614-23. PubMed ID: 24575918
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom.
    Bunse C; Bertos-Fortis M; Sassenhagen I; Sildever S; Sjöqvist C; Godhe A; Gross S; Kremp A; Lips I; Lundholm N; Rengefors K; Sefbom J; Pinhassi J; Legrand C
    Front Microbiol; 2016; 7():517. PubMed ID: 27148206
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tight Coupling of
    von Scheibner M; Sommer U; Jürgens K
    Front Microbiol; 2017; 8():27. PubMed ID: 28154558
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mercury concentration in phytoplankton in response to warming of an autumn - winter season.
    Bełdowska M; Kobos J
    Environ Pollut; 2016 Aug; 215():38-47. PubMed ID: 27176763
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory.
    Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA
    Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High CO
    Mausz MA; Segovia M; Larsen A; Berger SA; Egge JK; Pohnert G
    Environ Microbiol; 2020 Sep; 22(9):3863-3882. PubMed ID: 32656913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.