These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34835572)

  • 41. Catalytic nickel silicide as an alternative to noble metals in metal-assisted chemical etching of silicon.
    Kim K; Choi S; Bong H; Lee H; Kim M; Oh J
    Nanoscale; 2023 Aug; 15(33):13685-13691. PubMed ID: 37555310
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controlled Patterning of Vertical Silicon Structures Using Polymer Lithography and Wet Chemical Etching.
    Kim HJ; Lee SH; Lee J; Lee ES; Choi JH; Jung JY; Jeong JH; Choi DG
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4522-9. PubMed ID: 26369075
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metal-assisted chemical etching of silicon: a review.
    Huang Z; Geyer N; Werner P; de Boor J; Gösele U
    Adv Mater; 2011 Jan; 23(2):285-308. PubMed ID: 20859941
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silicon Conical Structures by Metal Assisted Chemical Etching.
    Pérez-Díaz O; Quiroga-González E
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32290505
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inverse metal-assisted chemical etching produces smooth high aspect ratio InP nanostructures.
    Kim SH; Mohseni PK; Song Y; Ishihara T; Li X
    Nano Lett; 2015 Jan; 15(1):641-8. PubMed ID: 25521615
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous fabrication of very high aspect ratio positive nano- to milliscale structures.
    Chen LQ; Chan-Park MB; Zhang Q; Chen P; Li CM; Li S
    Small; 2009 May; 5(9):1043-50. PubMed ID: 19235805
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications.
    Yeo C; Kim JB; Song YM; Lee YT
    Nanoscale Res Lett; 2013 Apr; 8(1):159. PubMed ID: 23566597
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemical carving lithography with scanning catalytic probes.
    Ki B; Kim K; Choi K; Oh J
    Sci Rep; 2020 Aug; 10(1):13411. PubMed ID: 32770060
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires.
    Balasundaram K; Sadhu JS; Shin JC; Azeredo B; Chanda D; Malik M; Hsu K; Rogers JA; Ferreira P; Sinha S; Li X
    Nanotechnology; 2012 Aug; 23(30):305304. PubMed ID: 22781120
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching.
    Teng F; Li N; Xu D; Xiao D; Yang X; Lu N
    Nanoscale; 2017 Jan; 9(1):449-453. PubMed ID: 27934988
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anisotropic Charge Transport Enabling High-Throughput and High-Aspect-Ratio Wet Etching of Silicon Carbide.
    Shi D; Chen Y; Li Z; Dong S; Li L; Hou M; Liu H; Zhao S; Chen X; Wong CP; Zhao N
    Small Methods; 2022 Aug; 6(8):e2200329. PubMed ID: 35616183
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing formation rate of highly-oriented silicon nanowire arrays with the assistance of back substrates.
    Chen CY; Wei TC; Lin CT; Li JY
    Sci Rep; 2017 Jun; 7(1):3164. PubMed ID: 28600489
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metal assisted anodic etching of silicon.
    Lai CQ; Zheng W; Choi WK; Thompson CV
    Nanoscale; 2015 Jul; 7(25):11123-34. PubMed ID: 26059556
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CMOS-Compatible and Low-Cost Thin Film MACE Approach for Light-Emitting Si NWs Fabrication.
    Leonardi AA; Lo Faro MJ; Irrera A
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443601
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatioselective Deposition of Passivating and Electrocatalytic Layers on Silicon Nanowire Arrays.
    Wendisch FJ; Abazari M; Werner V; Barb H; Rey M; Goerlitzer ESA; Vogel N; Mahdavi H; Bourret GR
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52581-52587. PubMed ID: 33169967
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of etching kinetics and directional transition of nanowires formed on pyramidal microtextures.
    Chen CY; Li L; Wong CP
    Chem Asian J; 2014 Jan; 9(1):93-9. PubMed ID: 24127312
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions.
    Huang Z; Shimizu T; Senz S; Zhang Z; Zhang X; Lee W; Geyer N; Gösele U
    Nano Lett; 2009 Jul; 9(7):2519-25. PubMed ID: 19480399
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Guided three-dimensional catalyst folding during metal-assisted chemical etching of silicon.
    Rykaczewski K; Hildreth OJ; Wong CP; Fedorov AG; Scott JH
    Nano Lett; 2011 Jun; 11(6):2369-74. PubMed ID: 21526791
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Graphene-Assisted Chemical Etching of Silicon Using Anodic Aluminum Oxides as Patterning Templates.
    Kim J; Lee DH; Kim JH; Choi SH
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24242-6. PubMed ID: 26473800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature.
    Li S; Ma W; Zhou Y; Chen X; Xiao Y; Ma M; Zhu W; Wei F
    Nanoscale Res Lett; 2014; 9(1):196. PubMed ID: 24910568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.