These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34835586)

  • 1. Thermal Transfer Characteristics of Flat Plate Micro Heat Pipe with Copper Spiral Woven Mesh and a Copper Foam Composite Wick.
    Zhang Y; Zhao Z; Luo C; Zhang D
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study on the thermal performance of ultra-thin flat heat pipes with novel multiscale striped composite wick structures.
    Wang M; Yang Y; Sun Y; Li J; Hao M
    Heliyon; 2023 Oct; 9(10):e20840. PubMed ID: 37867792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Experimental Study of a Composite Wick Structure for Ultra-Thin Flattened Heat Pipes.
    Zhou W; Yang Y; He J; Chen R; Jian Y; Shao D; Wu A
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Investigation on Ultra-Thin Vapor Chamber with Composite Wick for Electronics Thermal Management.
    Zhang S; Huang H; Bai J; Yan C; Qiu H; Tang Y; Luo F
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of mesh wick geometry on the maximum heat transfer rate of flat-micro heat pipes with multi-heat sources and sinks.
    Subedi B; Kim SH; Jang SP; Kedzierski MA
    Int J Heat Mass Transf; 2019 Mar; 131():537-545. PubMed ID: 31097839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic Copper Forest Wick Enables High Thermal Conductivity Ultrathin Heat Pipe.
    Luo JL; Mo DC; Wang YQ; Lyu SS
    ACS Nano; 2021 Apr; 15(4):6614-6621. PubMed ID: 33792288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs.
    Chang C; Han Z; He X; Wang Z; Ji Y
    Sci Rep; 2021 Apr; 11(1):8255. PubMed ID: 33859317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization and Heat Transfer Performance of Mini-Grooved Flat Heat Pipe Filled with Different Working Fluids.
    Xin F; Lyu Q; Tian W
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on the Manufacturing Process and Heat Transfer Performance of Ultra-Thin Heat Pipes: A Review.
    Duan L; Li H; Du J; Liu K; He W
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat Transfer Performance of a 3D-Printed Aluminum Flat-Plate Oscillating Heat Pipe Finned Radiator.
    Xiao X; He Y; Wang Q; Yang Y; Chang C; Ji Y
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current Trends in Wick Structure Construction in Loop Heat Pipes Applications: A Review.
    Szymanski P; Mikielewicz D; Fooladpanjeh S
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Micro CT based method for porosity estimation of sintered-wick heat pipes.
    Agustina D; Putra N
    Heliyon; 2023 Mar; 9(3):e13936. PubMed ID: 36925538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior Heat and Mass Transfer Performance of Bionic Wick with Finger-like Pores Inspired by the Stomatal Array of Natural Leaf.
    Xu K; Long L; Chen C; Ye H
    Langmuir; 2024 May; 40(19):10129-10142. PubMed ID: 38700156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat Transfer Performance of 3D-Printed Aluminium Flat-Plate Oscillating Heat Pipes for the Thermal Management of LEDs.
    Chang C; Yang Y; Pei L; Han Z; Xiao X; Ji Y
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Energy Storage and Heat Transfer of Nano-Enhanced Phase Change Material (NePCM) in a Shell and Tube Thermal Energy Storage (TES) Unit with a Partial Layer of Eccentric Copper Foam.
    Ghalambaz M; Mehryan SAM; Ayoubloo KA; Hajjar A; El Kadri M; Younis O; Pour MS; Hulme-Smith C
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33803388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary-Driven Boiling Heat Transfer on Superwetting Microgrooves.
    Li Y; Yang X; Tian X; Tang Y
    ACS Omega; 2022 Oct; 7(39):35339-35350. PubMed ID: 36211048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Study of a Leaf-Vein-like Structured Vapor Chamber.
    Zhou Z; Wang X; Zhou Y
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical study on capillary-evaporation behavior of porous wick in electronic cigarettes.
    Gao Y; Li D; Ru J; Yang M; Lu L; Lu L; Wu J; Huang Z; Xie Y; Gao N
    Sci Rep; 2021 May; 11(1):10348. PubMed ID: 33990647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on Laser Illumination Based on Phosphor in Metal (PiM) by Utilizing the Boron Nitride-Coated Copper Foams.
    Yan C; Ding X; Chen M; Liang Y; Yang S; Tang Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):29996-30007. PubMed ID: 34142542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat transfer and flow characteristics of a plate-fin heat sink equipped with copper foam and twisted tapes.
    Nilpueng K; Kaseethong P; Wongwises S
    Heliyon; 2024 Jun; 10(12):e32307. PubMed ID: 38975123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.