These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34835663)

  • 1. Designing a Graphene Coating-Based Supercapacitor with Lithium Ion Electrolyte: An Experimental and Computational Study via Multiscale Modeling.
    Baboo JP; Babar S; Kale D; Lekakou C; Laudone GM
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction kinetics of lithium-sulfur batteries with a polar Li-ion electrolyte: modeling of liquid phase and solid phase processes.
    Bacon S; Babar S; Dent M; Foster A; Baboo JP; Zhang T; Watts JF; Lekakou C
    Phys Chem Chem Phys; 2024 Jul; 26(28):19247-19256. PubMed ID: 38958556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Coating Effect on Charge Transfer Mechanisms in Composite Electrodes for Lithium-Ion Batteries.
    Fedorova AA; Levin OV; Eliseeva SN; Katrašnik T; Anishchenko DV
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ideal porous structure of EDLC carbon electrodes with extremely high capacitance.
    Urita K; Urita C; Fujita K; Horio K; Yoshida M; Moriguchi I
    Nanoscale; 2017 Oct; 9(40):15643-15649. PubMed ID: 28993824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-state NMR Study of Ion Adsorption and Charge Storage in Graphene Film Supercapacitor Electrodes.
    Li K; Bo Z; Yan J; Cen K
    Sci Rep; 2016 Dec; 6():39689. PubMed ID: 28000786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance.
    Chang L; Stacchiola DJ; Hu YH
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24655-24661. PubMed ID: 28671451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion accumulation-induced capacitance elevation in a microporous graphene-based supercapacitor.
    Pattanayak B; Le PA; Panda D; Simanjuntak FM; Wei KH; Winie T; Tseng TY
    RSC Adv; 2022 Sep; 12(42):27082-27093. PubMed ID: 36276039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Characterization of Single Layer Graphene/Electrolyte Interface: Effect of Solvent on the Interfacial Capacitance.
    Wu YC; Ye J; Jiang G; Ni K; Shu N; Taberna PL; Zhu Y; Simon P
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13317-13322. PubMed ID: 33555100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Crumpling Stage and Porosity of Graphene Electrode on the Performance of Electrochemical Supercapacitor.
    Khan AA; Rabi SN; Jamee T; Galib M; Elahi F; Rahman MA
    J Phys Chem B; 2024 Oct; 128(39):9586-9597. PubMed ID: 39313986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation Study of Electric Double-Layer Capacitance of Ordered Carbon Electrodes.
    Nigam R; Kar KK
    Langmuir; 2022 Oct; 38(40):12235-12247. PubMed ID: 36164778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZnO and reduced graphene oxide electrodes for all-in-one supercapacitor devices.
    Buldu-Akturk M; Toufani M; Tufani A; Erdem E
    Nanoscale; 2022 Feb; 14(8):3269-3278. PubMed ID: 35166280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode Mass Balancing as an Inexpensive and Simple Method to Increase the Capacitance of Electric Double-Layer Capacitors.
    Andres B; Engström AC; Blomquist N; Forsberg S; Dahlström C; Olin H
    PLoS One; 2016; 11(9):e0163146. PubMed ID: 27658253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor.
    Sari NP; Dutta D; Jamaluddin A; Chang JK; Su CY
    Phys Chem Chem Phys; 2017 Nov; 19(45):30381-30392. PubMed ID: 29119159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel Nanofoam/Different Phases of Ordered Mesoporous Carbon Composite Electrodes for Superior Capacitive Energy Storage.
    Lee K; Song H; Lee KH; Choi SH; Jang JH; Char K; Son JG
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22516-25. PubMed ID: 27490161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vanadium Pentoxide Nanobelt-Reduced Graphene Oxide Nanosheet Composites as High-Performance Pseudocapacitive Electrodes: ac Impedance Spectroscopy Data Modeling and Theoretical Calculations.
    Gupta S; Aberg B; Carrizosa SB; Dimakis N
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of salt concentration on properties of mixed carbonate-based electrolyte for Li-ion batteries: a molecular dynamics simulation study.
    Haghkhah H; Ghalami Choobar B; Amjad-Iranagh S
    J Mol Model; 2020 Aug; 26(8):220. PubMed ID: 32740770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast Fabrication of H
    Lan PL; Ni IC; Wu CI; Hsu CC; Cheng IC; Chen JZ
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-performance electrochemical supercapacitor based on a polyaniline/reduced graphene oxide electrode and a copper(ii) ion active electrolyte.
    Luo Y; Zhang Q; Hong W; Xiao Z; Bai H
    Phys Chem Chem Phys; 2017 Dec; 20(1):131-136. PubMed ID: 29210393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry.
    Richey FW; Dyatkin B; Gogotsi Y; Elabd YA
    J Am Chem Soc; 2013 Aug; 135(34):12818-26. PubMed ID: 23915377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.