These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34835681)

  • 1. Electrical Characterization of Germanium Nanowires Using a Symmetric Hall Bar Configuration: Size and Shape Dependence.
    Echresh A; Arora H; Fuchs F; Li Z; Hübner R; Prucnal S; Schuster J; Zahn P; Helm M; Zhou S; Erbe A; Rebohle L; Georgiev YM
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water induced electrical hysteresis in germanium nanowires: a theoretical study.
    Sk MA; Ng MF; Yang SW; Lim KH
    Phys Chem Chem Phys; 2011 Jun; 13(24):11663-70. PubMed ID: 21597612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires.
    Fukata N; Sato K; Mitome M; Bando Y; Sekiguchi T; Kirkham M; Hong JI; Wang ZL; Snyder RL
    ACS Nano; 2010 Jul; 4(7):3807-16. PubMed ID: 20565120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of molecular adsorption on the electrical conductance of single au nanowires fabricated by electron-beam lithography and focused ion beam etching.
    Shi P; Zhang J; Lin HY; Bohn PW
    Small; 2010 Nov; 6(22):2598-603. PubMed ID: 20957763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simplifying Nanowire Hall Effect Characterization by Using a Three-Probe Device Design.
    Hultin O; Otnes G; Samuelson L; Storm K
    Nano Lett; 2017 Feb; 17(2):1121-1126. PubMed ID: 28105848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium effects on the mechanical and electronic properties of germanium nanowires.
    González-Macías A; Salazar F; Miranda A; Trejo-Baños A; Pérez LA; Carvajal E; Cruz-Irisson M
    Nanotechnology; 2018 Apr; 29(15):154004. PubMed ID: 29372891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for electrical characterization of nanowires.
    Gurwitz R; Shalish I
    Nanotechnology; 2011 Oct; 22(43):435705. PubMed ID: 21971447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general method to measure the Hall effect in nanowires: examples of FeS2 and MnSi.
    DeGrave JP; Liang D; Jin S
    Nano Lett; 2013 Jun; 13(6):2704-9. PubMed ID: 23701294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On demand shape-selective integration of individual vertical germanium nanowires on a Si(111) substrate via laser-localized heating.
    Ryu SG; Kim E; Yoo JH; Hwang DJ; Xiang B; Dubon OD; Minor AM; Grigoropoulos CP
    ACS Nano; 2013 Mar; 7(3):2090-8. PubMed ID: 23414075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface chemistry and electrical properties of germanium nanowires.
    Wang D; Chang YL; Wang Q; Cao J; Farmer DB; Gordon RG; Dai H
    J Am Chem Soc; 2004 Sep; 126(37):11602-11. PubMed ID: 15366907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical and optical evaluation of n-type doping in In
    Zeng X; Mourão RT; Otnes G; Hultin O; Dagytė V; Heurlin M; Borgström MT
    Nanotechnology; 2018 Jun; 29(25):255701. PubMed ID: 29595525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress induced half-metallicity in surface defected germanium nanowires.
    Sk MA; Ng MF; Yang SW; Lim KH
    Phys Chem Chem Phys; 2012 Jan; 14(3):1166-74. PubMed ID: 22127329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High temperature Hall measurement setup for thin film characterization.
    Adnane L; Gokirmak A; Silva H
    Rev Sci Instrum; 2016 Jul; 87(7):075117. PubMed ID: 27475605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile Fabrication of Self-Aligned Nanoscale Hall Devices Using Nanowire Masks.
    Tang J; Yu G; Wang CY; Chang LT; Jiang W; He C; Wang KL
    Nano Lett; 2016 May; 16(5):3109-15. PubMed ID: 27046777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Top-Down Nanofabrication and Characterization of 20 nm Silicon Nanowires for Biosensing Applications.
    M Nuzaihan MN; Hashim U; Md Arshad MK; Rahim Ruslinda A; Rahman SF; Fathil MF; Ismail MH
    PLoS One; 2016; 11(3):e0152318. PubMed ID: 27022732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-relaxation induced transverse resistivity anomaly in epitaxial films through lithography engineering.
    Chen P; Liu P; Wang Y; Li X; Yun J; Gao C
    J Phys Condens Matter; 2022 Mar; 34(20):. PubMed ID: 35213847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicit Gain Equations for Single Crystalline Photoconductors.
    He J; Chen K; Huang C; Wang X; He Y; Dan Y
    ACS Nano; 2020 Mar; 14(3):3405-3413. PubMed ID: 32119512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducing novel electronic properties in <112> Ge nanowires by means of variations in their size, shape and strain: a first-principles computational study.
    Zhang C; De Sarkar A; Zhang RQ
    J Phys Condens Matter; 2012 Jan; 24(1):015301. PubMed ID: 22133518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused ion beam processing to fabricate ohmic contact electrodes on a bismuth nanowire for Hall measurements.
    Murata M; Hasegawa Y
    Nanoscale Res Lett; 2013 Sep; 8(1):400. PubMed ID: 24070421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic and passivation-dependent quantum confinement effects in germanium nanowires: a comparison with silicon nanowires.
    Jing M; Ni M; Song W; Lu J; Gao Z; Lai L; Mei WN; Yu D; Ye H; Wang L
    J Phys Chem B; 2006 Sep; 110(37):18332-7. PubMed ID: 16970454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.