These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 34835719)

  • 1. Development of Synthetic DNA Circuit and Networks for Molecular Information Processing.
    Zhang Y; Feng Y; Liang Y; Yang J; Zhang C
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supervised Learning in Adaptive DNA Strand Displacement Networks.
    Lakin MR; Stefanovic D
    ACS Synth Biol; 2016 Aug; 5(8):885-97. PubMed ID: 27111037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA Strand-Displacement Temporal Logic Circuits.
    Lapteva AP; Sarraf N; Qian L
    J Am Chem Soc; 2022 Jul; 144(27):12443-12449. PubMed ID: 35785961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Performance of DNA Strand Displacement Circuits by Shadow Cancellation.
    Song T; Gopalkrishnan N; Eshra A; Garg S; Mokhtar R; Bui H; Chandran H; Reif J
    ACS Nano; 2018 Nov; 12(11):11689-11697. PubMed ID: 30372034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Digitally Programmable Cytomorphic Chip for Simulation of Arbitrary Biochemical Reaction Networks.
    Woo SS; Kim J; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):360-378. PubMed ID: 29570063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleic Acid Databases and Molecular-Scale Computing.
    Song X; Reif J
    ACS Nano; 2019 Jun; 13(6):6256-6268. PubMed ID: 31117381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A logical molecular circuit for programmable and autonomous regulation of protein activity using DNA aptamer-protein interactions.
    Han D; Zhu Z; Wu C; Peng L; Zhou L; Gulbakan B; Zhu G; Williams KR; Tan W
    J Am Chem Soc; 2012 Dec; 134(51):20797-804. PubMed ID: 23194304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-based gene expression control for synthetic gene circuits.
    Santos-Moreno J; Schaerli Y
    Biochem Soc Trans; 2020 Oct; 48(5):1979-1993. PubMed ID: 32964920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Framework for the Modular and Combinatorial Assembly of Synthetic Gene Circuits.
    Santos-Moreno J; Schaerli Y
    ACS Synth Biol; 2019 Jul; 8(7):1691-1697. PubMed ID: 31185158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of an in vitro bistable circuit from synthetic transcriptional switches.
    Kim J; White KS; Winfree E
    Mol Syst Biol; 2006; 2():68. PubMed ID: 17170763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium.
    Fern J; Schulman R
    ACS Synth Biol; 2017 Sep; 6(9):1774-1783. PubMed ID: 28558208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling up genetic circuit design for cellular computing: advances and prospects.
    Xiang Y; Dalchau N; Wang B
    Nat Comput; 2018; 17(4):833-853. PubMed ID: 30524216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic genetic circuits for programmable biological functionalities.
    Xia PF; Ling H; Foo JL; Chang MW
    Biotechnol Adv; 2019 Nov; 37(6):107393. PubMed ID: 31051208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA nanotechnology provides an avenue for the construction of programmable dynamic molecular systems.
    Sato Y; Suzuki Y
    Biophys Physicobiol; 2021; 18():116-126. PubMed ID: 34123692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A versatile and convenient tool for regulation of DNA strand displacement and post-modification on pre-fabricated DNA nanodevices.
    Liao Y; Hu H; Tang X; Qin Y; Zhang W; Dong K; Yan B; Mu Y; Li L; Ming Z; Xiao X
    Nucleic Acids Res; 2023 Jan; 51(1):29-40. PubMed ID: 36537218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing DNA logic circuits based on the toehold preemption mechanism.
    Xing C; Zheng X; Zhang Q
    RSC Adv; 2021 Dec; 12(1):338-345. PubMed ID: 35424506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance biosensing based on autonomous enzyme-free DNA circuits.
    Wang H; Wang H; Willner I; Wang F
    Top Curr Chem (Cham); 2020 Feb; 378(1):20. PubMed ID: 32016608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic circuit design automation.
    Nielsen AA; Der BS; Shin J; Vaidyanathan P; Paralanov V; Strychalski EA; Ross D; Densmore D; Voigt CA
    Science; 2016 Apr; 352(6281):aac7341. PubMed ID: 27034378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic bionanotechnology: synthetic biology finds a toehold in nanotechnology.
    Green AA
    Emerg Top Life Sci; 2019 Nov; 3(5):507-516. PubMed ID: 33523177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic and systems biology principles in the design of programmable oncolytic virus immunotherapies for glioblastoma.
    Monie DD; Bhandarkar AR; Parney IF; Correia C; Sarkaria JN; Vile RG; Li H
    Neurosurg Focus; 2021 Feb; 50(2):E10. PubMed ID: 33524942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.