These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 34835791)
1. A Redox-Mediator-Integrated Flexible Micro-Supercapacitor with Improved Energy Storage Capability and Suppressed Self-Discharge Rate. Wi SM; Kim J; Lee S; Choi YR; Kim SH; Park JB; Cho Y; Ahn W; Jang AR; Hong J; Lee YW Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835791 [TBL] [Abstract][Full Text] [Related]
2. High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive. Kim D; Lee G; Kim D; Yun J; Lee SS; Ha JS Nanoscale; 2016 Aug; 8(34):15611-20. PubMed ID: 27511060 [TBL] [Abstract][Full Text] [Related]
3. High-Energy-Density Hydrogen-Ion-Rocking-Chair Hybrid Supercapacitors Based on Ti Hu M; Cui C; Shi C; Wu ZS; Yang J; Cheng R; Guang T; Wang H; Lu H; Wang X ACS Nano; 2019 Jun; 13(6):6899-6905. PubMed ID: 31100003 [TBL] [Abstract][Full Text] [Related]
4. Electrochemically active hydroquinone-based redox mediator for flexible energy storage system with improved charge storing ability. Choi H; Kim MC; Park Y; Lee S; Ahn W; Hong J; Inn Sohn J; Jang AR; Lee YW J Colloid Interface Sci; 2021 Apr; 588():62-69. PubMed ID: 33388587 [TBL] [Abstract][Full Text] [Related]
5. Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte. Chen YC; Lin LY J Colloid Interface Sci; 2019 Mar; 537():295-305. PubMed ID: 30448650 [TBL] [Abstract][Full Text] [Related]
6. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte. Zhang Y; Cui X; Zu L; Cai X; Liu Y; Wang X; Lian H Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773855 [TBL] [Abstract][Full Text] [Related]
7. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances. Naderi L; Shahrokhian S J Colloid Interface Sci; 2019 Apr; 542():325-338. PubMed ID: 30763900 [TBL] [Abstract][Full Text] [Related]
8. Laser-Induced Interdigital Structured Graphene Electrodes Based Flexible Micro-Supercapacitor for Efficient Peak Energy Storage. Ray A; Roth J; Saruhan B Molecules; 2022 Jan; 27(1):. PubMed ID: 35011558 [TBL] [Abstract][Full Text] [Related]
9. Enhanced electrochemical behaviors of carbon felt electrode using redox-active electrolyte for all-solid-state supercapacitors. Chen L; Wu C; Qin W; Wang X; Jia C J Colloid Interface Sci; 2020 Oct; 577():12-18. PubMed ID: 32470700 [TBL] [Abstract][Full Text] [Related]
10. Highly Conductive Supramolecular Salt Gel Electrolyte for Flexible Supercapacitors. Wang H; Zhang Q; Chen S; Liu X; Liu J; He W; Liu X ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39356324 [TBL] [Abstract][Full Text] [Related]
11. Engineering Interlaced Architecture of Pristine Graphene Anchored with 2-Amino-8-Naphthol 6-Sulfonic Acids for Printed Hybrid Micro-Supercapacitors with High Electrochemical Capability. Chen H; Chen M; Hu X; Mao Z; Liu Y; Chen X; Cai H; Bai Y ACS Appl Mater Interfaces; 2022 Sep; 14(36):41348-41360. PubMed ID: 36059205 [TBL] [Abstract][Full Text] [Related]
12. Scalable Fabrication of Photochemically Reduced Graphene-Based Monolithic Micro-Supercapacitors with Superior Energy and Power Densities. Wang S; Wu ZS; Zheng S; Zhou F; Sun C; Cheng HM; Bao X ACS Nano; 2017 Apr; 11(4):4283-4291. PubMed ID: 28350433 [TBL] [Abstract][Full Text] [Related]
13. Constructing MXene-PANI@MWCNTs heterojunction with high specific capacitance towards flexible micro-supercapacitor. Wang Q; Fang Y; Cao M Nanotechnology; 2022 Apr; 33(29):. PubMed ID: 35381578 [TBL] [Abstract][Full Text] [Related]
14. Development of high performance alpha-Co(OH) Rong Y; Chen Y; Zheng J; Zhao Y; Li Q J Colloid Interface Sci; 2021 Sep; 598():1-13. PubMed ID: 33887606 [TBL] [Abstract][Full Text] [Related]
15. All-Carbon Monolithic Composites from Carbon Foam and Hierarchical Porous Carbon for Energy Storage. Zhu S; Gruschwitz M; Tsikourkitoudi V; Fischer D; Simon F; Tegenkamp C; Sommer M; Choudhury S ACS Appl Mater Interfaces; 2022 Oct; 14(39):44772-44781. PubMed ID: 36153978 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Ye D; Yu Y; Tang J; Liu L; Wu Y Nanoscale; 2016 May; 8(19):10406-14. PubMed ID: 27141910 [TBL] [Abstract][Full Text] [Related]
17. Stamping Fabrication of Flexible Planar Micro-Supercapacitors Using Porous Graphene Inks. Li F; Qu J; Li Y; Wang J; Zhu M; Liu L; Ge J; Duan S; Li T; Bandari VK; Huang M; Zhu F; Schmidt OG Adv Sci (Weinh); 2020 Oct; 7(19):2001561. PubMed ID: 33042763 [TBL] [Abstract][Full Text] [Related]
18. High-Performance Flexible In-Plane Micro-Supercapacitors Based on Vertically Aligned CuSe@Ni(OH) Gong J; Li JC; Yang J; Zhao S; Yang Z; Zhang K; Bao J; Pang H; Han M ACS Appl Mater Interfaces; 2018 Nov; 10(44):38341-38349. PubMed ID: 30335929 [TBL] [Abstract][Full Text] [Related]
19. In Situ Growing BCN Nanotubes on Carbon Fibers for Novel High-Temperature Supercapacitor with Excellent Cycling Performance. Liang Z; Tu H; Shi D; Chen F; Jiang H; Shao Y; Wu Y; Hao X Small; 2021 Dec; 17(51):e2102899. PubMed ID: 34643040 [TBL] [Abstract][Full Text] [Related]
20. Integrated supercapacitor with self-healing, arbitrary deformability and anti-freezing based on gradient interface structure from electrode to electrolyte. Qin G; Liu Y; Zhang W; He W; Su X; Lv Q; Yu X; Chen Q; Yang J J Colloid Interface Sci; 2023 Apr; 635():427-440. PubMed ID: 36599241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]