These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34835792)

  • 1. Facile Synthesis of Microporous Carbons from Biomass Waste as High Performance Supports for Dehydrogenation of Formic Acid.
    Cao T; Cheng J; Ma J; Yang C; Yao M; Liu F; Deng M; Wang X; Ren Y
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Catalytic Performance of N-Doped Carbon Sphere-Supported Pd Nanoparticles by Secondary Nitrogen Source Regulation for Formic Acid Dehydrogenation.
    Deng M; Yang A; Ma J; Yang C; Cao T; Yang S; Yao M; Liu F; Wang X; Cao J
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18550-18560. PubMed ID: 35412790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H
    Chaparro-Garnica JA; Navlani-García M; Salinas-Torres D; Morallón E; Cazorla-Amorós D
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH)
    Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH
    Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Palladium Catalyst Supported on Boron-Doped Porous Carbon for Efficient Dehydrogenation of Formic Acid.
    Liu H; Huang M; Tao W; Han L; Zhang J; Zhao Q
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application and Properties of Microporous Carbons Activated by ZnCl
    Li B; Hu J; Xiong H; Xiao Y
    ACS Omega; 2020 Apr; 5(16):9398-9407. PubMed ID: 32363292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Effective Strategy to Boost Formic Acid Dehydrogenation over Pd/AC-NH
    Jiang S; Shi H; Xu Y; Liu J; Yu T; Ren G
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39377117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laminar N-Doped Carbon Materials from a Biopolymer for Use as a Catalytic Support for Hydrodechlorination Catalysts.
    Ruiz-Garcia C; Gilarranz MA
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34198896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen Evolution from Additive-Free Formic Acid Dehydrogenation Using Weakly Basic Resin-Supported Pd Catalyst.
    Li L; Chen X; Zhang C; Zhang G; Liu Z
    ACS Omega; 2022 May; 7(17):14944-14951. PubMed ID: 35557660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Various Morphology of WO₃ Modified Activated Carbon Supported Pd Catalysts with Enhanced Formic Acid Electrooxidation.
    Li PW; Li YH; Ma YM; Li QX
    J Nanosci Nanotechnol; 2019 Dec; 19(12):7777-7784. PubMed ID: 31196289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic dehydrogenation of liquid organic hydrogen carrier dodecahydro-N-ethylcarbazole over palladium catalysts supported on different supports.
    Feng Z; Chen X; Bai X
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36172-36185. PubMed ID: 32556981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pd-C Catalytic Thin Films Prepared by Magnetron Sputtering for the Decomposition of Formic Acid.
    Arzac GM; Fernández A; Godinho V; Hufschmidt D; Jiménez de Haro MC; Medrán B; Montes O
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selectable Microporous Carbons Derived from Poplar Wood by Three Preparation Routes for CO
    Shao L; Sang Y; Liu N; Liu J; Zhan P; Huang J; Chen J
    ACS Omega; 2020 Jul; 5(28):17450-17462. PubMed ID: 32715230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid.
    Wang X; Ling EAP; Guan C; Zhang Q; Wu W; Liu P; Zheng N; Zhang D; Lopatin S; Lai Z; Huang KW
    ChemSusChem; 2018 Oct; 11(20):3591-3598. PubMed ID: 30207639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of AuPd nanoparticles anchored on TiO
    Jiang Y; Chen M; Yang Y; Zhang X; Xiao X; Fan X; Wang C; Chen L
    Nanotechnology; 2018 Aug; 29(33):335402. PubMed ID: 29794333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N'-diimine ligand in water.
    Wang Z; Lu SM; Li J; Wang J; Li C
    Chemistry; 2015 Sep; 21(36):12592-5. PubMed ID: 26202172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon bowl-confined subnanometric palladium-gold clusters for formic acid dehydrogenation and hexavalent chromium reduction.
    Sun X; Ding Y; Feng G; Yao Q; Zhu J; Xia J; Lu ZH
    J Colloid Interface Sci; 2023 Sep; 645():676-684. PubMed ID: 37167916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient dehydrogenation of a formic acid-ammonium formate mixture over Au
    Guo XT; Zhang J; Chi JC; Li ZH; Liu YC; Liu XR; Zhang SY
    RSC Adv; 2019 Feb; 9(11):5995-6002. PubMed ID: 35517262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yolk-shell silica dioxide spheres @ metal-organic framework immobilized Ni/Mo nanoparticles as an effective catalyst for formic acid dehydrogenation at low temperature.
    Prabu S; Chiang KY
    J Colloid Interface Sci; 2021 Dec; 604():584-595. PubMed ID: 34280756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.