These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34835794)

  • 1. Modal Properties of Photonic Crystal Cavities and Applications to Lasers.
    Saldutti M; Xiong M; Dimopoulos E; Yu Y; Gioannini M; Mørk J
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field penetrations in photonic crystal Fano reflectors.
    Zhao D; Ma Z; Zhou W
    Opt Express; 2010 Jun; 18(13):14152-8. PubMed ID: 20588548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Efficiency Coupling of Free Electrons to Sub-λ
    Bézard M; Si Hadj Mohand I; Ruggierio L; Le Roux A; Auad Y; Baroux P; Tizei LHG; Checoury X; Kociak M
    ACS Nano; 2024 Apr; 18(15):10417-10426. PubMed ID: 38557059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocavity tuning and formation controlled by the phase change of sub-micron-square GST patterns on Si photonic crystals.
    Uemura T; Chiba H; Yoda T; Moritake Y; Tanaka Y; Ono M; Kuramochi E; Notomi M
    Opt Express; 2024 Jan; 32(2):1802-1824. PubMed ID: 38297724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode selection in InGaAs/InGaAsP quantum well photonic crystal lasers based on coupled double-heterostructure cavities.
    Wang LF; Cheng XT; Zhang XD; Yu JW; Yan JY; Ni ZB; Wang T; Xia MJ; Lin X; Liu F; Jin CY
    Opt Express; 2022 Mar; 30(7):10229-10238. PubMed ID: 35472995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-finesse Fabry-Perot cavities with bidimensional Si
    Chen X; Chardin C; Makles K; Caër C; Chua S; Braive R; Robert-Philip I; Briant T; Cohadon PF; Heidmann A; Jacqmin T; Deléglise S
    Light Sci Appl; 2017 Jan; 6(1):e16190. PubMed ID: 30167192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of photonic crystal slow light waveguides and cavities.
    Reardon CP; Rey IH; Welna K; O'Faolain L; Krauss TF
    J Vis Exp; 2012 Nov; (69):e50216. PubMed ID: 23222804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Q photonic nanocavity in a two-dimensional photonic crystal.
    Akahane Y; Asano T; Song BS; Noda S
    Nature; 2003 Oct; 425(6961):944-7. PubMed ID: 14586465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin Colloidal Quantum Dot Films for Optical Amplification: The Role of Modal Confinement and Heat Dissipation.
    Koh WK; Lee J; Cho KS; Roh YG
    Chemphyschem; 2017 Nov; 18(21):2981-2984. PubMed ID: 28861946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low loss photonic nanocavity via dark magnetic dipole resonant mode near metal.
    Liu N; Silien C; Sun G; Corbett B
    Sci Rep; 2018 Nov; 8(1):17054. PubMed ID: 30451911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cylindrical vector resonant modes achieved in planar photonic crystal cavities with enlarged air-holes.
    Chang K; Fang L; Zhao C; Zhao J; Gan X
    Opt Express; 2017 Sep; 25(18):21594-21602. PubMed ID: 29041456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic Nanolaser with Extreme Optical Field Confinement.
    Wu H; Yang L; Xu P; Gong J; Guo X; Wang P; Tong L
    Phys Rev Lett; 2022 Jul; 129(1):013902. PubMed ID: 35841559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature continuous-wave nanolaser diode utilized by ultrahigh-Q few-cell photonic crystal nanocavities.
    Kuramochi E; Duprez H; Kim J; Takiguchi M; Takeda K; Fujii T; Nozaki K; Shinya A; Sumikura H; Taniyama H; Matsuo S; Notomi M
    Opt Express; 2018 Oct; 26(20):26598-26617. PubMed ID: 30469744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors.
    Boutami S; Benbakir B; Letartre X; Leclercq JL; Regreny P; Viktorovitch P
    Opt Express; 2007 Sep; 15(19):12443-9. PubMed ID: 19547615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monopole woodpile photonic crystal modes for light-matter interaction and optical trapping.
    Tang L; Yoshie T
    Opt Express; 2009 Feb; 17(3):1346-51. PubMed ID: 19188963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical bistability involving photonic crystal microcavities and Fano line shapes.
    Cowan AR; Young JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046606. PubMed ID: 14683064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the room-temperature confinement of light by miniaturizing mode sizes into a deep subwavelength scale using dielectric spheres in metal cavities.
    Liu K; Luo Z; Ye WM; Yuan XD; Zhu ZH; Zeng C
    Opt Lett; 2012 Oct; 37(19):4107-9. PubMed ID: 23027294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linearly Tunable Fano Resonance Modes in a Plasmonic Nanostructure with a Waveguide Loaded with Two Rectangular Cavities Coupled by a Circular Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient waveguide-coupling of metal-clad nanolaser cavities.
    Kim MK; Lakhani AM; Wu MC
    Opt Express; 2011 Nov; 19(23):23504-12. PubMed ID: 22109228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance phoxonic cavity designs for enhanced acousto-optical interaction.
    Aly AH; Shaban SM; Mehaney A
    Appl Opt; 2021 Apr; 60(11):3224-3231. PubMed ID: 33983223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.