These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34835830)

  • 1. Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect.
    Alibakhshi A; Dastjerdi S; Malikan M; Eremeyev VA
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear vibrations of axially moving simply supported viscoelastic nanobeams based on nonlocal strain gradient theory.
    Wang J; Shen H
    J Phys Condens Matter; 2019 Dec; 31(48):485403. PubMed ID: 31422947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperelastic Microcantilever AFM: Efficient Detection Mechanism Based on Principal Parametric Resonance.
    Alibakhshi A; Rahmanian S; Dastjerdi S; Malikan M; Karami B; Akgöz B; Civalek Ö
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation into the Dynamic Stability of Nanobeams by Using the Levinson Beam Model.
    Huang Y; Huang R; Huang Y
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic stability of the euler nanobeam subjected to inertial moving nanoparticles based on the nonlocal strain gradient theory.
    Hashemian M; Jasim DJ; Sajadi SM; Khanahmadi R; Pirmoradian M; Salahshour S
    Heliyon; 2024 May; 10(9):e30231. PubMed ID: 38737259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Modified Couple Stress Elasticity for Non-Uniform Composite Laminated Beams Based on the Ritz Formulation.
    Jouneghani FZ; Babamoradi H; Dimitri R; Tornabene F
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32204431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the Higher-Order Hamilton Approach to the Nonlinear Free Vibrations Analysis of Porous FG Nano-Beams in a Hygrothermal Environment Based on a Local/Nonlocal Stress Gradient Model of Elasticity.
    Penna R; Feo L; Lovisi G; Fabbrocino F
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory.
    Sahmani S; Aghdam MM
    J Biomech; 2017 Dec; 65():49-60. PubMed ID: 29050823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory.
    Najaafi N; Jamali M; Habibi M; Sadeghi S; Jung DW; Nabipour N
    J Biomol Struct Dyn; 2021 Apr; 39(7):2543-2554. PubMed ID: 32242490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Mathematical Model of Functionally Graded Porous Euler-Bernoulli Nanoscaled Beams Taking into Account Some Types of Nonlinearities.
    Krysko AV; Papkova IV; Rezchikov AF; Krysko VA
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of pull-in instability of geometrically nonlinear microbeam using radial basis artificial neural network based on couple stress theory.
    Heidari M; Heidari A; Homaei H
    Comput Intell Neurosci; 2014; 2014():571632. PubMed ID: 24860602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear electromechanical analysis of axisymmetric thin circular plate based on flexoelectric theory.
    Ji X
    Sci Rep; 2021 Nov; 11(1):21762. PubMed ID: 34741112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Electrostatic Force Nonlinearity on the Sensitivity Performance of a Tapered Beam Micro-Gyroscope Based on Frequency Modulation.
    Zhang K; Xie J; Hao S; Zhang Q; Feng J
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying the nonlinear response of incompressible hyperelastic thin circular cylindrical shells with geometric imperfections.
    Arani MS; Bakhtiari M; Toorani M; Lakis AA
    J Mech Behav Biomed Mater; 2024 Jul; 155():106562. PubMed ID: 38678749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Stability of Nanobeams Based on the Reddy's Beam Theory.
    Huang Y; Huang R; Zhang J
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic analysis of a micro-cantilever beam in non-contact mode: Classic and Strain Gradient theories.
    Ali Mohammadi M; Farajollahi M; Yousefi-Koma A
    Microsc Res Tech; 2022 Jan; 85(1):352-363. PubMed ID: 34432344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Surface Stress-Driven Model for Higher Vibration Modes of Functionally Graded Nanobeams.
    Lovisi G; Feo L; Lambiase A; Penna R
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules.
    Sahmani S; Aghdam MM
    Math Biosci; 2018 Jan; 295():24-35. PubMed ID: 29104135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Strain Hardening on the Dynamic Response of Human Artery Segments.
    Charalambous HP; Roussis PC; Giannakopoulos AE
    Open Biomed Eng J; 2017; 11():85-110. PubMed ID: 29387276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent thermo-mechanical vibration of lipid supramolecular nano-tubules via nonlocal strain gradient Timoshenko beam theory.
    Alizadeh-Hamidi B; Hassannejad R; Omidi Y
    Comput Biol Med; 2021 Jul; 134():104475. PubMed ID: 34022484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.