BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 34835832)

  • 1. Charge-Modulated Synthesis of Highly Stable Iron Oxide Nanoparticles for In Vitro and In Vivo Toxicity Evaluation.
    Woo S; Kim S; Kim H; Cheon YW; Yoon S; Oh JH; Park J
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance.
    Sugumaran PJ; Liu XL; Herng TS; Peng E; Ding J
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22703-22713. PubMed ID: 31244027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amine-assisted catechol-based nanocoating on ultrasmall iron oxide nanoparticles for high-resolution
    Kim H; Woo S; Jung H; Ahn HS; Chen N; Cho H; Park J
    Nanoscale Adv; 2023 Jun; 5(12):3368-3375. PubMed ID: 37325533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models.
    Sun Z; Yathindranath V; Worden M; Thliveris JA; Chu S; Parkinson FE; Hegmann T; Miller DW
    Int J Nanomedicine; 2013; 8():961-70. PubMed ID: 23494517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of Common Biological Buffers with Iron Oxide Nanoparticles.
    Cross SN; Al-Feghali AH; Blum AS
    Langmuir; 2023 Jun; 39(22):7632-7641. PubMed ID: 37204470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T
    Xiao S; Yu X; Zhang L; Zhang Y; Fan W; Sun T; Zhou C; Liu Y; Liu Y; Gong M; Zhang D
    Int J Nanomedicine; 2019; 14():8499-8507. PubMed ID: 31695377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses.
    Luo C; Li Y; Yang L; Wang X; Long J; Liu J
    Arch Toxicol; 2015 Mar; 89(3):357-69. PubMed ID: 24847785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the Biocompatibility of Multi-Anchored Glycoconjugate Functionalized Iron Oxide Nanoparticles in a Normal Human Colon Cell Line CCD-18Co.
    Raval YS; Samstag A; Taylor C; Huang G; Mefford OT; Tzeng TJ
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mussel-inspired chitooligosaccharide based multidentate ligand for highly stabilized nanoparticles.
    Lu C; Park MK; Lu C; Lee YH; Chai KY
    J Mater Chem B; 2015 May; 3(18):3730-3737. PubMed ID: 32262847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant Iron Oxide Nanoparticles: Their Biocompatibility and Bioactive Properties.
    Lee J; Lee JH; Lee SY; Park SA; Kim JH; Hwang D; Kim KA; Kim HS
    Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal Stability of CA, SDS and PVA Coated Iron Oxide Nanoparticles (IONPs): Effect of Molar Ratio and Salinity.
    Che Mohamed Hussein SN; Amir Z; Jan BM; Khalil M; Azizi A
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphonate coating of commercial iron oxide nanoparticles for nanowarming cryopreserved samples.
    Pasek-Allen JL; Wilharm RK; Gao Z; Pierre VC; Bischof JC
    J Mater Chem B; 2022 May; 10(19):3734-3746. PubMed ID: 35466332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Synthesis and Characterization of L-Aspartic Acid Coated Iron Oxide Magnetic Nanoparticles (IONPs) For Biomedical Applications.
    Salehiabar M; Nosrati H; Davaran S; Danafar H; Manjili HK
    Drug Res (Stuttg); 2018 May; 68(5):280-285. PubMed ID: 29036735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing safety and protein interactions of surface-modified iron oxide nanoparticles for potential use in biomedical areas.
    Dyawanapelly S; Jagtap DD; Dandekar P; Ghosh G; Jain R
    Colloids Surf B Biointerfaces; 2017 Jun; 154():408-420. PubMed ID: 28388527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells.
    Luther EM; Petters C; Bulcke F; Kaltz A; Thiel K; Bickmeyer U; Dringen R
    Acta Biomater; 2013 Sep; 9(9):8454-65. PubMed ID: 23727247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Optimized Iron Oxide Embedded Poly(Lactic Acid) Nanocomposites for Effective Magnetic Hyperthermia and Biosecurity.
    Ryu C; Lee H; Kim H; Hwang S; Hadadian Y; Mohanty A; Park IK; Cho B; Yoon J; Lee JY
    Int J Nanomedicine; 2022; 17():31-44. PubMed ID: 35023918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier.
    Sun Z; Worden M; Wroczynskyj Y; Yathindranath V; van Lierop J; Hegmann T; Miller DW
    Int J Nanomedicine; 2014; 9():3013-26. PubMed ID: 25018630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Papain grafted into the silica coated iron-based magnetic nanoparticles 'IONPs@SiO
    Nasiri R; Dabagh S; Meamar R; Idris A; Muhammad I; Irfan M; Rashidi Nodeh H
    Nanotechnology; 2020 May; 31(19):195603. PubMed ID: 31978907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles in BALB/c mice.
    Salimi M; Sarkar S; Fathi S; Alizadeh AM; Saber R; Moradi F; Delavari H
    Int J Nanomedicine; 2018; 13():1483-1493. PubMed ID: 29559777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity and biodistribution assessment of curcumin-coated iron oxide nanoparticles: Multidose administration.
    Aboushoushah S; Alshammari W; Darwesh R; Elbaily N
    Life Sci; 2021 Jul; 277():119625. PubMed ID: 34015288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.