BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 34835990)

  • 1. Role of CD38 in Adipose Tissue: Tuning Coenzyme Availability?
    Benzi A; Grozio A; Spinelli S; Sturla L; Guse AH; De Flora A; Zocchi E; Heeren J; Bruzzone S
    Nutrients; 2021 Oct; 13(11):. PubMed ID: 34835990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of cyclizing NAD to cyclic ADP-ribose by ADP-ribosyl cyclase and CD38.
    Graeff R; Liu Q; Kriksunov IA; Kotaka M; Oppenheimer N; Hao Q; Lee HC
    J Biol Chem; 2009 Oct; 284(40):27629-36. PubMed ID: 19640843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD38 downregulation modulates NAD
    Benzi A; Sturla L; Heine M; Fischer AW; Spinelli S; Magnone M; Sociali G; Parodi A; Fenoglio D; Emionite L; Koch-Nolte F; Mittrücker HW; Guse AH; De Flora A; Zocchi E; Heeren J; Bruzzone S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2021 Jan; 1866(1):158819. PubMed ID: 33010451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions.
    Chini EN
    Curr Pharm Des; 2009; 15(1):57-63. PubMed ID: 19149603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD38: T Cell Immuno-Metabolic Modulator.
    Kar A; Mehrotra S; Chatterjee S
    Cells; 2020 Jul; 9(7):. PubMed ID: 32709019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism.
    Camacho-Pereira J; Tarragó MG; Chini CCS; Nin V; Escande C; Warner GM; Puranik AS; Schoon RA; Reid JM; Galina A; Chini EN
    Cell Metab; 2016 Jun; 23(6):1127-1139. PubMed ID: 27304511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme properties of Aplysia ADP-ribosyl cyclase: comparison with NAD glycohydrolase of CD38 antigen.
    Inageda K; Takahashi K; Tokita K; Nishina H; Kanaho Y; Kukimoto I; Kontani K; Hoshino S; Katada T
    J Biochem; 1995 Jan; 117(1):125-31. PubMed ID: 7775378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of intracellular levels of NAD: a novel role for CD38.
    Aksoy P; White TA; Thompson M; Chini EN
    Biochem Biophys Res Commun; 2006 Jul; 345(4):1386-92. PubMed ID: 16730329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent and noncovalent intermediates of an NAD utilizing enzyme, human CD38.
    Liu Q; Kriksunov IA; Jiang H; Graeff R; Lin H; Lee HC; Hao Q
    Chem Biol; 2008 Oct; 15(10):1068-78. PubMed ID: 18940667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nicotinamide 2-fluoroadenine dinucleotide unmasks the NAD+ glycohydrolase activity of Aplysia californica adenosine 5'-diphosphate ribosyl cyclase.
    Zhang B; Muller-Steffner H; Schuber F; Potter BV
    Biochemistry; 2007 Apr; 46(13):4100-9. PubMed ID: 17341094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CD38 glycohydrolase and the NAD sink: implications for pathological conditions.
    Zeidler JD; Hogan KA; Agorrody G; Peclat TR; Kashyap S; Kanamori KS; Gomez LS; Mazdeh DZ; Warner GM; Thompson KL; Chini CCS; Chini EN
    Am J Physiol Cell Physiol; 2022 Mar; 322(3):C521-C545. PubMed ID: 35138178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAD binding by human CD38 analyzed by Trp189 fluorescence.
    Wolters V; Rosche A; Bauche A; Kulow F; Harneit A; Fliegert R; Guse AH
    Biochim Biophys Acta Mol Cell Res; 2019 Jul; 1866(7):1189-1196. PubMed ID: 30472140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD
    Meyer T; Shimon D; Youssef S; Yankovitz G; Tessler A; Chernobylsky T; Gaoni-Yogev A; Perelroizen R; Budick-Harmelin N; Steinman L; Mayo L
    Proc Natl Acad Sci U S A; 2022 Aug; 119(35):e2211310119. PubMed ID: 35994674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis and SAR studies of NAD analogues as potent inhibitors towards CD38 NADase.
    Wang S; Zhu W; Wang X; Li J; Zhang K; Zhang L; Zhao YJ; Lee HC; Zhang L
    Molecules; 2014 Sep; 19(10):15754-67. PubMed ID: 25268725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functions of aryl hydrocarbon receptor (AHR) and CD38 in NAD metabolism and nonalcoholic steatohepatitis (NASH).
    Bock KW
    Biochem Pharmacol; 2019 Nov; 169():113620. PubMed ID: 31465774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD38 inhibitor 78c increases mice lifespan and healthspan in a model of chronological aging.
    Peclat TR; Thompson KL; Warner GM; Chini CCS; Tarragó MG; Mazdeh DZ; Zhang C; Zavala-Solorio J; Kolumam G; Liang Wong Y; Cohen RL; Chini EN
    Aging Cell; 2022 Apr; 21(4):e13589. PubMed ID: 35263032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Aplysia californica adenosine 5'-diphosphate ribosyl cyclase for substrate binding requirements: design of potent inhibitors.
    Migaud ME; Pederick RL; Bailey VC; Potter BV
    Biochemistry; 1999 Jul; 38(28):9105-14. PubMed ID: 10413485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts.
    Franco L; Zocchi E; Usai C; Guida L; Bruzzone S; Costa A; De Flora A
    J Biol Chem; 2001 Jun; 276(24):21642-8. PubMed ID: 11274199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single residue at the active site of CD38 determines its NAD cyclizing and hydrolyzing activities.
    Graeff R; Munshi C; Aarhus R; Johns M; Lee HC
    J Biol Chem; 2001 Apr; 276(15):12169-73. PubMed ID: 11278881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD38 Inhibits Prostate Cancer Metabolism and Proliferation by Reducing Cellular NAD
    Chmielewski JP; Bowlby SC; Wheeler FB; Shi L; Sui G; Davis AL; Howard TD; D'Agostino RB; Miller LD; Sirintrapun SJ; Cramer SD; Kridel SJ
    Mol Cancer Res; 2018 Nov; 16(11):1687-1700. PubMed ID: 30076241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.