BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34836462)

  • 21. Use of Physiologically-Based Kinetics Modelling to Reliably Predict Internal Concentrations of the UV Filter, Homosalate, After Repeated Oral and Topical Application.
    Najjar A; Schepky A; Krueger CT; Dent M; Cable S; Li H; Grégoire S; Roussel L; Noel-Voisin A; Hewitt NJ; Cardamone E
    Front Pharmacol; 2021; 12():802514. PubMed ID: 35058784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gaining acceptance in next generation PBK modelling approaches for regulatory assessments - An OECD international effort.
    Paini A; Tan YM; Sachana M; Worth A
    Comput Toxicol; 2021 May; 18():100163. PubMed ID: 34027244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predictive performance of next generation human physiologically based kinetic (PBK) models based on in vitro and in silico input data.
    Punt A; Louisse J; Beekmann K; Pinckaers N; Fabian E; Van Ravenzwaay B; Carmichael PL; Sorrell I; Moxon TE
    ALTEX; 2022; 39(2):221–234. PubMed ID: 35064272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 10-step framework for use of read-across (RAX) in next generation risk assessment (NGRA) for cosmetics safety assessment.
    Alexander-White C; Bury D; Cronin M; Dent M; Hack E; Hewitt NJ; Kenna G; Naciff J; Ouedraogo G; Schepky A; Mahony C; Europe C
    Regul Toxicol Pharmacol; 2022 Mar; 129():105094. PubMed ID: 34990780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pksensi: An R package to apply global sensitivity analysis in physiologically based kinetic modeling.
    Hsieh NH; Reisfeld B; Chiu WA
    SoftwareX; 2020; 12():. PubMed ID: 33426260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Physiologically Based Kinetic modelling in addressing environmental chemical mixtures - A review.
    Desalegn A; Bopp S; Asturiol D; Lamon L; Worth A; Paini A
    Comput Toxicol; 2019 May; 10():158-168. PubMed ID: 31218267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated workflows for modelling chemical fate, kinetics and toxicity.
    Sala Benito JV; Paini A; Richarz AN; Meinl T; Berthold MR; Cronin MTD; Worth AP
    Toxicol In Vitro; 2017 Dec; 45(Pt 2):249-257. PubMed ID: 28323105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrating in vitro data and physiologically based kinetic modeling-facilitated reverse dosimetry to predict human cardiotoxicity of methadone.
    Shi M; Bouwmeester H; Rietjens IMCM; Strikwold M
    Arch Toxicol; 2020 Aug; 94(8):2809-2827. PubMed ID: 32367273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Next generation risk assessment (NGRA): Bridging in vitro points-of-departure to human safety assessment using physiologically-based kinetic (PBK) modelling - A case study of doxorubicin with dose metrics considerations.
    Li H; Yuan H; Middleton A; Li J; Nicol B; Carmichael P; Guo J; Peng S; Zhang Q
    Toxicol In Vitro; 2021 Aug; 74():105171. PubMed ID: 33848589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating in vitro data and physiologically based kinetic (PBK) modelling to assess the in vivo potential developmental toxicity of a series of phenols.
    Strikwold M; Spenkelink B; de Haan LHJ; Woutersen RA; Punt A; Rietjens IMCM
    Arch Toxicol; 2017 May; 91(5):2119-2133. PubMed ID: 27815601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mode of action based risk assessment of the botanical food-borne alkenylbenzene apiol from parsley using physiologically based kinetic (PBK) modelling and read-across from safrole.
    Alajlouni AM; Al Malahmeh AJ; Kiwamoto R; Wesseling S; Soffers AE; Al-Subeihi AA; Vervoort J; Rietjens IM
    Food Chem Toxicol; 2016 Mar; 89():138-50. PubMed ID: 26826679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parameter grouping and co-estimation in physiologically based kinetic models using genetic algorithms.
    Tsiros P; Minadakis V; Li D; Sarimveis H
    Toxicol Sci; 2024 Jun; 200(1):31-46. PubMed ID: 38637946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products.
    Moxon TE; Li H; Lee MY; Piechota P; Nicol B; Pickles J; Pendlington R; Sorrell I; Baltazar MT
    Toxicol In Vitro; 2020 Mar; 63():104746. PubMed ID: 31837441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes.
    Kiwamoto R; Spenkelink A; Rietjens IM; Punt A
    Toxicol Appl Pharmacol; 2015 Jan; 282(1):108-17. PubMed ID: 25448044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiologically-Based Kinetic Modeling of Intravenously Administered Gold (Au) Nanoparticles.
    Minnema J; Vandebriel RJ; Boer K; Klerx W; De Jong WH; Delmaar CJE
    Small; 2023 May; 19(21):e2207326. PubMed ID: 36828794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Read-across and new approach methodologies applied in a 10-step framework for cosmetics safety assessment - A case study with parabens.
    Ouedraogo G; Alexander-White C; Bury D; Clewell HJ; Cronin M; Cull T; Dent M; Desprez B; Detroyer A; Ellison C; Giammanco S; Hack E; Hewitt NJ; Kenna G; Klaric M; Kreiling R; Lester C; Mahony C; Mombelli E; Naciff J; O'Brien J; Schepky A; Tozer S; van der Burg B; van Vugt-Lussenburg B; Stuard S; Cosmetics Europe
    Regul Toxicol Pharmacol; 2022 Jul; 132():105161. PubMed ID: 35508214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The margin of internal exposure (MOIE) concept for dermal risk assessment based on oral toxicity data - A case study with caffeine.
    Bessems JGM; Paini A; Gajewska M; Worth A
    Toxicology; 2017 Dec; 392():119-129. PubMed ID: 28288858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictive Performance of Next Generation Physiologically Based Kinetic (PBK) Model Predictions in Rats Based on In Vitro and In Silico Input Data.
    Punt A; Louisse J; Pinckaers N; Fabian E; van Ravenzwaay B
    Toxicol Sci; 2022 Feb; 186(1):18-28. PubMed ID: 34927682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applicability of generic PBK modelling in chemical hazard assessment: A case study with IndusChemFate.
    Fragki S; Piersma AH; Westerhout J; Kienhuis A; Kramer NI; Zeilmaker MJ
    Regul Toxicol Pharmacol; 2022 Dec; 136():105267. PubMed ID: 36367522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating in vitro chemical transplacental passage into a generic PBK model: A QIVIVE approach.
    Fragki S; Hoogenveen R; van Oostrom C; Schwillens P; Piersma AH; Zeilmaker MJ
    Toxicology; 2022 Jan; 465():153060. PubMed ID: 34871708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.