These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34836462)

  • 61. Inter-individual variation in chlorpyrifos toxicokinetics characterized by physiologically based kinetic (PBK) and Monte Carlo simulation comparing human liver microsome and Supersome
    Zhao S; Wesseling S; Rietjens IMCM; Strikwold M
    Arch Toxicol; 2022 May; 96(5):1387-1409. PubMed ID: 35294598
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The use of in vitro toxicity data and physiologically based kinetic modeling to predict dose-response curves for in vivo developmental toxicity of glycol ethers in rat and man.
    Louisse J; de Jong E; van de Sandt JJ; Blaauboer BJ; Woutersen RA; Piersma AH; Rietjens IM; Verwei M
    Toxicol Sci; 2010 Dec; 118(2):470-84. PubMed ID: 20833708
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Development of physiologically based pharmacokinetic and physiologically based pharmacodynamic models for applications in toxicology and risk assessment.
    Andersen ME
    Toxicol Lett; 1995 Sep; 79(1-3):35-44. PubMed ID: 7570672
    [TBL] [Abstract][Full Text] [Related]  

  • 64. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Generic physiologically based kinetic modelling for farm animals: Part II. Predicting tissue concentrations of chemicals in swine, cattle, and sheep.
    Lautz LS; Hoeks S; Oldenkamp R; Hendriks AJ; Dorne JLCM; Ragas AMJ
    Toxicol Lett; 2020 Jan; 318():50-56. PubMed ID: 31622650
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Application of partition coefficient methods to predict tissue:plasma affinities in common farm animals: Influence of ionisation state.
    Lautz LS; Dorne JCM; Punt A
    Toxicol Lett; 2024 Jul; 398():140-149. PubMed ID: 38925423
    [TBL] [Abstract][Full Text] [Related]  

  • 67. IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 4: Prediction accuracy and software comparisons with improved data and modelling strategies.
    Ahmad A; Pepin X; Aarons L; Wang Y; Darwich AS; Wood JM; Tannergren C; Karlsson E; Patterson C; Thörn H; Ruston L; Mattinson A; Carlert S; Berg S; Murphy D; Engman H; Laru J; Barker R; Flanagan T; Abrahamsson B; Budhdeo S; Franek F; Moir A; Hanisch G; Pathak SM; Turner D; Jamei M; Brown J; Good D; Vaidhyanathan S; Jackson C; Nicolas O; Beilles S; Nguefack JF; Louit G; Henrion L; Ollier C; Boulu L; Xu C; Heimbach T; Ren X; Lin W; Nguyen-Trung AT; Zhang J; He H; Wu F; Bolger MB; Mullin JM; van Osdol B; Szeto K; Korjamo T; Pappinen S; Tuunainen J; Zhu W; Xia B; Daublain P; Wong S; Varma MVS; Modi S; Schäfer KJ; Schmid K; Lloyd R; Patel A; Tistaert C; Bevernage J; Nguyen MA; Lindley D; Carr R; Rostami-Hodjegan A
    Eur J Pharm Biopharm; 2020 Nov; 156():50-63. PubMed ID: 32805361
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Computational models for the assessment of manufactured nanomaterials: Development of model reporting standards and mapping of the model landscape.
    Lamon L; Asturiol D; Vilchez A; Ruperez-Illescas R; Cabellos J; Richarz A; Worth A
    Comput Toxicol; 2019 Feb; 9():143-151. PubMed ID: 31008416
    [TBL] [Abstract][Full Text] [Related]  

  • 69.
    Algharably EA; Di Consiglio E; Testai E; Pistollato F; Mielke H; Gundert-Remy U
    Front Toxicol; 2022; 4():885843. PubMed ID: 35924078
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Use of an in vitro-in silico testing strategy to predict inter-species and inter-ethnic human differences in liver toxicity of the pyrrolizidine alkaloids lasiocarpine and riddelliine.
    Ning J; Chen L; Strikwold M; Louisse J; Wesseling S; Rietjens IMCM
    Arch Toxicol; 2019 Mar; 93(3):801-818. PubMed ID: 30661089
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The integration of data on physico-chemical properties, in vitro-derived toxicity data and physiologically based kinetic and dynamic as modelling a tool in hazard and risk assessment. A commentary.
    Blaauboer BJ
    Toxicol Lett; 2003 Feb; 138(1-2):161-71. PubMed ID: 12559700
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A physiologically based kinetic (PBK) model describing plasma concentrations of quercetin and its metabolites in rats.
    Boonpawa R; Spenkelink A; Rietjens IM; Punt A
    Biochem Pharmacol; 2014 May; 89(2):287-99. PubMed ID: 24561179
    [TBL] [Abstract][Full Text] [Related]  

  • 74.
    Kamiya Y; Handa K; Miura T; Yanagi M; Shigeta K; Hina S; Shimizu M; Kitajima M; Shono F; Funatsu K; Yamazaki H
    Chem Res Toxicol; 2021 Feb; 34(2):507-513. PubMed ID: 33433197
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Predicting human tissue exposures to xenobiotics using a bottom-up physiologically-based biokinetic model.
    Tan SPF; Chan ECY; Chan JCY
    ALTEX; 2021; 38(2):253-268. PubMed ID: 33219385
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Beyond the black stump: rapid reviews of health research issues affecting regional, rural and remote Australia.
    Osborne SR; Alston LV; Bolton KA; Whelan J; Reeve E; Wong Shee A; Browne J; Walker T; Versace VL; Allender S; Nichols M; Backholer K; Goodwin N; Lewis S; Dalton H; Prael G; Curtin M; Brooks R; Verdon S; Crockett J; Hodgins G; Walsh S; Lyle DM; Thompson SC; Browne LJ; Knight S; Pit SW; Jones M; Gillam MH; Leach MJ; Gonzalez-Chica DA; Muyambi K; Eshetie T; Tran K; May E; Lieschke G; Parker V; Smith A; Hayes C; Dunlop AJ; Rajappa H; White R; Oakley P; Holliday S
    Med J Aust; 2020 Dec; 213 Suppl 11():S3-S32.e1. PubMed ID: 33314144
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nano- and microplastic PBK modeling in the context of human exposure and risk assessment.
    Wardani I; Hazimah Mohamed Nor N; Wright SL; Kooter IM; Koelmans AA
    Environ Int; 2024 Apr; 186():108504. PubMed ID: 38537584
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Physiologically-based pharmacokinetic (PBPK) models for assessing the kinetics of xenobiotics during pregnancy: achievements and shortcomings.
    Lu G; Abduljalil K; Jamei M; Johnson TN; Soltani H; Rostami-Hodjegan A
    Curr Drug Metab; 2012 Jul; 13(6):695-720. PubMed ID: 22452453
    [TBL] [Abstract][Full Text] [Related]  

  • 79. New framework for a non-animal approach adequately assures the safety of cosmetic ingredients - A case study on caffeine.
    Bury D; Alexander-White C; Clewell HJ; Cronin M; Desprez B; Detroyer A; Efremenko A; Firman J; Hack E; Hewitt NJ; Kenna G; Klaric M; Lester C; Mahony C; Ouedraogo G; Paini A; Schepky A;
    Regul Toxicol Pharmacol; 2021 Jul; 123():104931. PubMed ID: 33905778
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Scoping Review of Technologies and Their Applicability for Exposome-Based Risk Assessment in the Oil and Gas Industry.
    Kuijpers E; van Wel L; Loh M; Galea KS; Makris KC; Stierum R; Fransman W; Pronk A
    Ann Work Expo Health; 2021 Nov; 65(9):1011-1028. PubMed ID: 34219141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.