These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34836633)

  • 41. Observer-Based Decentralized Control for Non-Strict-Feedback Fractional-Order Nonlinear Large-Scale Systems With Unknown Dead Zones.
    Zhan Y; Li X; Tong S
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7479-7490. PubMed ID: 35157590
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel fractional-order decentralized control for nonlinear fractional-order composite systems with time delays.
    Zhe Z; Yaonan W; Jing Z; Ai Z; Cheng F; Liu F
    ISA Trans; 2022 Sep; 128(Pt B):230-242. PubMed ID: 34952689
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays.
    Peng X; Wu H; Song K; Shi J
    Neural Netw; 2017 Oct; 94():46-54. PubMed ID: 28750347
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impulsive stabilization of fractional differential systems.
    Xu L; Li J; Ge SS
    ISA Trans; 2017 Sep; 70():125-131. PubMed ID: 28641815
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition.
    Zhang X; Niu P; Ma Y; Wei Y; Li G
    Neural Netw; 2017 Oct; 94():67-75. PubMed ID: 28753446
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiple Mittag-Leffler stability of fractional-order competitive neural networks with Gaussian activation functions.
    Liu P; Nie X; Liang J; Cao J
    Neural Netw; 2018 Dec; 108():452-465. PubMed ID: 30312961
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global Mittag-Leffler synchronization of coupled delayed fractional reaction-diffusion Cohen-Grossberg neural networks via sliding mode control.
    Kao Y; Cao Y; Chen X
    Chaos; 2022 Nov; 32(11):113123. PubMed ID: 36456319
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Observer-Based Boundary Stabilization of Coupled Semilinear Reaction-Diffusion Neural Networks With Spatially Varying Coefficients via Event-Triggered Controller.
    Ge F; Chen Y
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8348-8357. PubMed ID: 37015550
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Output feedback fractional-order nonsingular terminal sliding mode control of underwater remotely operated vehicles.
    Wang Y; Chen J; Gu L
    ScientificWorldJournal; 2014; 2014():838019. PubMed ID: 24983004
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New approach to global Mittag-Leffler synchronization problem of fractional-order quaternion-valued BAM neural networks based on a new inequality.
    Xiao J; Wen S; Yang X; Zhong S
    Neural Netw; 2020 Feb; 122():320-337. PubMed ID: 31751846
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adaptive neural output-feedback control for nonstrict-feedback time-delay fractional-order systems with output constraints and actuator nonlinearities.
    Zouari F; Ibeas A; Boulkroune A; Cao J; Mehdi Arefi M
    Neural Netw; 2018 Sep; 105():256-276. PubMed ID: 29890383
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Formation deployment control of multi-agent systems modeled with PDE.
    Zhang S; Tang L; Liu YJ
    Math Biosci Eng; 2022 Sep; 19(12):13541-13559. PubMed ID: 36654057
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adaptive Fuzzy Output-Feedback Stabilization Control for a Class of Switched Nonstrict-Feedback Nonlinear Systems.
    Li Y; Tong S
    IEEE Trans Cybern; 2017 Apr; 47(4):1007-1016. PubMed ID: 26992190
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays.
    Li HL; Hu C; Cao J; Jiang H; Alsaedi A
    Neural Netw; 2019 Oct; 118():102-109. PubMed ID: 31254765
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New classifications of monotonicity investigation for discrete operators with Mittag-Leffler kernel.
    Mohammed PO; Goodrich CS; Brzo AB; Baleanu D; Hamed YS
    Math Biosci Eng; 2022 Feb; 19(4):4062-4074. PubMed ID: 35341286
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel.
    Yusuf A; Qureshi S; Inc M; Aliyu AI; Baleanu D; Shaikh AA
    Chaos; 2018 Dec; 28(12):123121. PubMed ID: 30599538
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Note on generalized Mittag-Leffler function.
    Desai R; Salehbhai IA; Shukla AK
    Springerplus; 2016; 5(1):683. PubMed ID: 27350918
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Global Dissipativity and Quasi-Mittag-Leffler Synchronization of Fractional-Order Discontinuous Complex-Valued Neural Networks.
    Ding Z; Zhang H; Zeng Z; Yang L; Li S
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4139-4152. PubMed ID: 34739381
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Attitude output feedback control for rigid spacecraft with finite-time convergence.
    Hu Q; Niu G
    ISA Trans; 2017 Sep; 70():173-186. PubMed ID: 28789773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generalized form of fractional order COVID-19 model with Mittag-Leffler kernel.
    Aslam M; Farman M; Akgül A; Ahmad A; Sun M
    Math Methods Appl Sci; 2021 Jul; 44(11):8598-8614. PubMed ID: 34226779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.