These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 34836710)

  • 21. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis.
    Kho KW; Qing KZ; Shen ZX; Ahmad IB; Lim SS; Mhaisalkar S; White TJ; Watt F; Soo KC; Olivo M
    J Biomed Opt; 2008; 13(5):054026. PubMed ID: 19021406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Composite Sensor Particles for Tuned SERS Sensing: Microfluidic Synthesis, Properties and Applications.
    Visaveliya N; Lenke S; Köhler JM
    ACS Appl Mater Interfaces; 2015 May; 7(20):10742-54. PubMed ID: 25939496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic Transport of Hybrid Optoplasmonic Particles for Repeatable SERS Detection.
    Liu D; Liu C; Yuan Y; Zhang X; Huang Y; Yan S
    Anal Chem; 2021 Aug; 93(30):10672-10678. PubMed ID: 34308643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel Surface-Enhanced Raman Spectroscopy Techniques for DNA, Protein and Drug Detection.
    Chen C; Liu W; Tian S; Hong T
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of aptamer-based SERS biosensors: Design strategies and applications.
    Muhammad M; Huang Q
    Talanta; 2021 May; 227():122188. PubMed ID: 33714469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices.
    Connatser RM; Cochran M; Harrison RJ; Sepaniak MJ
    Electrophoresis; 2008 Apr; 29(7):1441-50. PubMed ID: 18386301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinguishing cancer cell lines at a single living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform.
    Cong L; Liang L; Cao F; Sun D; Yue J; Xu W; Liang C; Xu S
    Mikrochim Acta; 2019 May; 186(6):367. PubMed ID: 31115772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent progress of microfluidics in surface-enhanced Raman spectroscopic analysis.
    Xia L; Li G
    J Sep Sci; 2021 Apr; 44(8):1752-1768. PubMed ID: 33630352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic Droplet-SERS Platform for Single-Cell Cytokine Analysis via a Cell Surface Bioconjugation Strategy.
    Cong L; Wang J; Li X; Tian Y; Xu S; Liang C; Xu W; Wang W; Xu S
    Anal Chem; 2022 Jul; 94(29):10375-10383. PubMed ID: 35815899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system.
    Kamińska A; Witkowska E; Winkler K; Dzięcielewski I; Weyher JL; Waluk J
    Biosens Bioelectron; 2015 Apr; 66():461-7. PubMed ID: 25497986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry.
    Fan M; Andrade GFS; Brolo AG
    Anal Chim Acta; 2020 Feb; 1097():1-29. PubMed ID: 31910948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous immunoassays of dual prostate cancer markers using a SERS-based microdroplet channel.
    Gao R; Cheng Z; Wang X; Yu L; Guo Z; Zhao G; Choo J
    Biosens Bioelectron; 2018 Nov; 119():126-133. PubMed ID: 30121424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of Raman reporter-embedded magnetic/plasmonic hybrid nanostirrers for reliable microfluidic SERS biosensors.
    Zou B; Lou S; Duan J; Zhou S; Wang Y
    Nanoscale; 2023 May; 15(18):8424-8431. PubMed ID: 37093062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dielectrophoresis-Based SERS Sensors for the Detection of Cancer Cells in Microfluidic Chips.
    Szymborski TR; Czaplicka M; Nowicka AB; Trzcińska-Danielewicz J; Girstun A; Kamińska A
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A droplet-based microfluidic chip as a platform for leukemia cell lysate identification using surface-enhanced Raman scattering.
    Hassoun M; Rüger J; Kirchberger-Tolstik T; Schie IW; Henkel T; Weber K; Cialla-May D; Krafft C; Popp J
    Anal Bioanal Chem; 2018 Jan; 410(3):999-1006. PubMed ID: 28905087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Raman and Surface-Enhanced Raman Scattering Detection in Flowing Solutions for Complex Mixture Analysis.
    Poonia M; Morder CJ; Schorr HC; Schultz ZD
    Annu Rev Anal Chem (Palo Alto Calif); 2024 Jul; 17(1):411-432. PubMed ID: 38382105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel Digital SERS-Microfluidic Chip for Rapid and Accurate Quantification of Microorganisms.
    Wen P; Yang F; Zhao H; Xu Y; Li S; Chen L
    Anal Chem; 2024 Jan; 96(4):1454-1461. PubMed ID: 38224075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organic Molecule Detection Based on SERS in Microfluidics.
    Zhang X; Zhang H; Yan S; Zeng Z; Huang A; Liu A; Yuan Y; Huang Y
    Sci Rep; 2019 Nov; 9(1):17634. PubMed ID: 31776350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SERS monitoring of the Fenton degradation reaction based on microfluidic droplets and alginate microparticles.
    Yue S; Ye W; Xu Z
    Analyst; 2019 Sep; 144(19):5882-5889. PubMed ID: 31497808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.