BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 34836810)

  • 21. Deep convolutional neural networks for Raman spectrum recognition: a unified solution.
    Liu J; Osadchy M; Ashton L; Foster M; Solomon CJ; Gibson SJ
    Analyst; 2017 Oct; 142(21):4067-4074. PubMed ID: 28993828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of Deep Learning in Neuroradiology: Brain Haemorrhage Classification Using Transfer Learning.
    Dawud AM; Yurtkan K; Oztoprak H
    Comput Intell Neurosci; 2019; 2019():4629859. PubMed ID: 31281335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-Method Diagnosis of Blood Microscopic Sample for Early Detection of Acute Lymphoblastic Leukemia Based on Deep Learning and Hybrid Techniques.
    Abunadi I; Senan EM
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Raman spectroscopy for esophageal tumor diagnosis and delineation using machine learning and the portable Raman spectrometer.
    Yang J; Xu P; Wu S; Chen Z; Fang S; Xiao H; Hu F; Jiang L; Wang L; Mo B; Ding F; Lin LL; Ye J
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124461. PubMed ID: 38759393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Online detection of concentrate grade in the antimony flotation process based on in situ Raman spectroscopy combined with a CNN-GRU hybrid model.
    Cai Y; Li S; Yao Z; Li T; Wang Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 301():122909. PubMed ID: 37302195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Raman Spectroscopy Coupled with Reflectance Spectroscopy as a Tool for the Characterization of Key Hydrothermal Alteration Minerals in Epithermal Au-Ag Systems: Utility and Implications for Mineral Exploration.
    Arbiol C; Layne GD
    Appl Spectrosc; 2021 Dec; 75(12):1475-1496. PubMed ID: 34608818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron ore identification method using reflectance spectrometer and a deep neural network framework.
    Xiao D; Le BT; Ha TTL
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119168. PubMed ID: 33229210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting Chemical Carcinogens Using a Hybrid Neural Network Deep Learning Method.
    Limbu S; Dakshanamurthy S
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic classification of Candida species using Raman spectroscopy and machine learning.
    Fernández-Manteca MG; Ocampo-Sosa AA; Ruiz de Alegría-Puig C; Pía Roiz M; Rodríguez-Grande J; Madrazo F; Calvo J; Rodríguez-Cobo L; López-Higuera JM; Fariñas MC; Cobo A
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122270. PubMed ID: 36580749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods.
    Ren L; Tian Y; Yang X; Wang Q; Wang L; Geng X; Wang K; Du Z; Li Y; Lin H
    Food Chem; 2023 Jan; 400():134043. PubMed ID: 36058043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid identification of pathogens by using surface-enhanced Raman spectroscopy and multi-scale convolutional neural network.
    Ding J; Lin Q; Zhang J; Young GM; Jiang C; Zhong Y; Zhang J
    Anal Bioanal Chem; 2021 Jun; 413(14):3801-3811. PubMed ID: 33961103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of pancreatic cancer by convolutional-neural-network-assisted spontaneous Raman spectroscopy with critical feature visualization.
    Li Z; Li Z; Chen Q; Ramos A; Zhang J; Boudreaux JP; Thiagarajan R; Bren-Mattison Y; Dunham ME; McWhorter AJ; Li X; Feng JM; Li Y; Yao S; Xu J
    Neural Netw; 2021 Dec; 144():455-464. PubMed ID: 34583101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cascaded Deep Convolutional Neural Networks as Improved Methods of Preprocessing Raman Spectroscopy Data.
    Kazemzadeh M; Martinez-Calderon M; Xu W; Chamley LW; Hisey CL; Broderick NGR
    Anal Chem; 2022 Sep; 94(37):12907-12918. PubMed ID: 36067379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks.
    Alawad M; Gao S; Qiu JX; Yoon HJ; Blair Christian J; Penberthy L; Mumphrey B; Wu XC; Coyle L; Tourassi G
    J Am Med Inform Assoc; 2020 Jan; 27(1):89-98. PubMed ID: 31710668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. H-CNN combined with tissue Raman spectroscopy for cervical cancer detection.
    Kang Z; Li Y; Liu J; Chen C; Wu W; Chen C; Lv X; Liang F
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122339. PubMed ID: 36641920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid Diagnosis of Ductal Carcinoma In Situ and Breast Cancer Based on Raman Spectroscopy of Serum Combined with Convolutional Neural Network.
    Wang X; Xie F; Yang Y; Zhao J; Wu G; Wang S
    Bioengineering (Basel); 2023 Jan; 10(1):. PubMed ID: 36671637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scale-Adaptive Deep Model for Bacterial Raman Spectra Identification.
    Deng L; Zhong Y; Wang M; Zheng X; Zhang J
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):369-378. PubMed ID: 34543211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Novel and Rapid Serum Detection Technology for Non-Invasive Screening of Gastric Cancer Based on Raman Spectroscopy Combined With Different Machine Learning Methods.
    Li M; He H; Huang G; Lin B; Tian H; Xia K; Yuan C; Zhan X; Zhang Y; Fu W
    Front Oncol; 2021; 11():665176. PubMed ID: 34646758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Raman spectroscopy for on-line monitoring of botanical extraction process using convolutional neural network with background subtraction.
    Ru C; Wen W; Zhong Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121494. PubMed ID: 35715369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.