These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34836986)

  • 1. Integration of neural architecture within a finite element framework for improved neuromusculoskeletal modeling.
    Volk VL; Hamilton LD; Hume DR; Shelburne KB; Fitzpatrick CK
    Sci Rep; 2021 Nov; 11(1):22983. PubMed ID: 34836986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural-driven activation of 3D muscle within a finite element framework: exploring applications in healthy and neurodegenerative simulations.
    Babcock CD; Volk VL; Zeng W; Hamilton LD; Shelburne KB; Fitzpatrick CK
    Comput Methods Biomech Biomed Engin; 2023 Nov; ():1-11. PubMed ID: 37966863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ReadySim: A computational framework for building explicit finite element musculoskeletal simulations directly from motion laboratory data.
    Hume DR; Rullkoetter PJ; Shelburne KB
    Int J Numer Method Biomed Eng; 2020 Nov; 36(11):e3396. PubMed ID: 32812382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational model of torque generation: neural, contractile, metabolic and musculoskeletal components.
    Callahan DM; Umberger BR; Kent-Braun JA
    PLoS One; 2013; 8(2):e56013. PubMed ID: 23405245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling.
    Hume DR; Navacchia A; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():153-160. PubMed ID: 30630624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion control of the ankle joint with a multiple contact nerve cuff electrode: a simulation study.
    Park HJ; Durand DM
    Biol Cybern; 2014 Aug; 108(4):445-57. PubMed ID: 24939581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces.
    Diffo Kaze A; Maas S; Arnoux PJ; Wolf C; Pape D
    Biomed Eng Online; 2017 Dec; 16(1):138. PubMed ID: 29212516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing.
    Azari F; Arjmand N; Shirazi-Adl A; Rahimi-Moghaddam T
    J Biomech; 2018 Mar; 70():157-165. PubMed ID: 28527584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computationally efficient strategy to estimate muscle forces in a finite element musculoskeletal model of the lower limb.
    Navacchia A; Hume DR; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():94-102. PubMed ID: 30616983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding.
    Del Vecchio A; Casolo A; Negro F; Scorcelletti M; Bazzucchi I; Enoka R; Felici F; Farina D
    J Physiol; 2019 Apr; 597(7):1873-1887. PubMed ID: 30727028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.
    Sartori M; Maculan M; Pizzolato C; Reggiani M; Farina D
    J Neurophysiol; 2015 Oct; 114(4):2509-27. PubMed ID: 26245321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of glenohumeral joint muscle insertion on moment arms using a finite element model.
    Hoffmann M; Begon M; Lafon Y; Duprey S
    Comput Methods Biomech Biomed Engin; 2020 Nov; 23(14):1117-1126. PubMed ID: 32643408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model.
    Elias LA; Watanabe RN; Kohn AF
    PLoS Comput Biol; 2014 Nov; 10(11):e1003944. PubMed ID: 25393548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic prediction of tongue muscle activations using a finite element model.
    Stavness I; Lloyd JE; Fels S
    J Biomech; 2012 Nov; 45(16):2841-8. PubMed ID: 23021611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Load-sharing in the lumbosacral spine in neutral standing & flexed postures - A combined finite element and inverse static study.
    Liu T; Khalaf K; Naserkhaki S; El-Rich M
    J Biomech; 2018 Mar; 70():43-50. PubMed ID: 29153706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vivo Neuromechanics: Decoding Causal Motor Neuron Behavior with Resulting Musculoskeletal Function.
    Sartori M; Yavuz UŞ; Farina D
    Sci Rep; 2017 Oct; 7(1):13465. PubMed ID: 29044165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach for simulation of the muscle force modeling it by summation of motor unit contraction forces.
    Raikova R; Aladjov H; Celichowski J; Krutki P
    Comput Math Methods Med; 2013; 2013():625427. PubMed ID: 24198849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EMG-Assisted Muscle Force Driven Finite Element Model of the Knee Joint with Fibril-Reinforced Poroelastic Cartilages and Menisci.
    Esrafilian A; Stenroth L; Mononen ME; Tanska P; Avela J; Korhonen RK
    Sci Rep; 2020 Feb; 10(1):3026. PubMed ID: 32080233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validated Computational Framework for Evaluation of In Vivo Knee Mechanics.
    Ali AA; Mannen EM; Rullkoetter PJ; Shelburne KB
    J Biomech Eng; 2020 Aug; 142(8):. PubMed ID: 31913450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait.
    Li J
    J Mech Behav Biomed Mater; 2021 Jan; 113():104136. PubMed ID: 33053499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.