BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34836988)

  • 1. Direct pixel to pixel principal strain mapping from tagging MRI using end to end deep convolutional neural network (DeepStrain).
    Abd-Elmoniem KZ; Yassine IA; Metwalli NS; Hamimi A; Ouwerkerk R; Matta JR; Wessel M; Solomon MA; Elinoff JM; Ghanem AM; Gharib AM
    Sci Rep; 2021 Nov; 11(1):23021. PubMed ID: 34836988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Native-resolution myocardial principal Eulerian strain mapping using convolutional neural networks and Tagged Magnetic Resonance Imaging.
    Yassine IA; Ghanem AM; Metwalli NS; Hamimi A; Ouwerkerk R; Matta JR; Solomon MA; Elinoff JM; Gharib AM; Abd-Elmoniem KZ
    Comput Biol Med; 2022 Feb; 141():105041. PubMed ID: 34836627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance rapid MR parameter mapping using model-based deep adversarial learning.
    Liu F; Kijowski R; Feng L; El Fakhri G
    Magn Reson Imaging; 2020 Dec; 74():152-160. PubMed ID: 32980503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic attenuation map estimation from SPECT data only for brain perfusion scans using convolutional neural networks.
    Chen Y; Goorden MC; Beekman FJ
    Phys Med Biol; 2021 Mar; 66(6):065006. PubMed ID: 33571975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved harmonic phase myocardial strain maps.
    Kuijer JP; Jansen E; Marcus JT; van Rossum AC; Heethaar RM
    Magn Reson Med; 2001 Nov; 46(5):993-9. PubMed ID: 11675652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
    Liu F; Feng L; Kijowski R
    Magn Reson Med; 2019 Jul; 82(1):174-188. PubMed ID: 30860285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artifacts reduction in strain maps of tagged magnetic resonance imaging using harmonic phase.
    Wang D; Fu Y; Ashraf MA
    Open Med (Wars); 2015; 10(1):425-433. PubMed ID: 28352731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GAN for synthesizing CT from T2-weighted MRI data towards MR-guided radiation treatment.
    Ranjan A; Lalwani D; Misra R
    MAGMA; 2022 Jun; 35(3):449-457. PubMed ID: 34741702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmural myocardial strain in mouse: quantification of high-resolution MR tagging using harmonic phase (HARP) analysis.
    Zhong J; Liu W; Yu X
    Magn Reson Med; 2009 Jun; 61(6):1368-73. PubMed ID: 19319888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional cardiac function analysis from tagged MRI images. Comparison of techniques: Harmonic-Phase (HARP) versus Sinusoidal-Modeling (SinMod) analysis.
    Ibrahim EH; Stojanovska J; Hassanein A; Duvernoy C; Croisille P; Pop-Busui R; Swanson SD
    Magn Reson Imaging; 2018 Dec; 54():271-282. PubMed ID: 29777821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of myocardial deformation using correlation image velocimetry.
    Jacob A; Krishnamurthi G; Mathur M
    BMC Med Imaging; 2017 Apr; 17(1):25. PubMed ID: 28381245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional convolutional neural networks for simultaneous dual-tracer PET imaging.
    Xu J; Liu H
    Phys Med Biol; 2019 Sep; 64(18):185016. PubMed ID: 31292287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network.
    Kromrey ML; Tamada D; Johno H; Funayama S; Nagata N; Ichikawa S; Kühn JP; Onishi H; Motosugi U
    Eur Radiol; 2020 Nov; 30(11):5923-5932. PubMed ID: 32556463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT.
    Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA
    Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A graph theoretic approach for computing 3D+time biventricular cardiac strain from tagged MRI data.
    Li M; Gupta H; Lloyd SG; Dell'Italia LJ; Denney TS
    Med Image Anal; 2017 Jan; 35():46-57. PubMed ID: 27318591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of PET Attenuation Map for Whole-Body Time-of-Flight
    Hwang D; Kang SK; Kim KY; Seo S; Paeng JC; Lee DS; Lee JS
    J Nucl Med; 2019 Aug; 60(8):1183-1189. PubMed ID: 30683763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone shadow segmentation from ultrasound data for orthopedic surgery using GAN.
    Alsinan AZ; Patel VM; Hacihaliloglu I
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1477-1485. PubMed ID: 32656685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of realistic multi-contrast textured XCAT (MT-XCAT) phantoms using a dual-discriminator conditional-generative adversarial network (D-CGAN).
    Chang Y; Lafata K; Segars WP; Yin FF; Ren L
    Phys Med Biol; 2020 Mar; 65(6):065009. PubMed ID: 32023555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.