These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 34837030)
1. A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography. Ryu G; Lee K; Park D; Park SH; Sagong M Sci Rep; 2021 Nov; 11(1):23024. PubMed ID: 34837030 [TBL] [Abstract][Full Text] [Related]
2. A Deep Learning Algorithm for Classifying Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Ryu G; Lee K; Park D; Kim I; Park SH; Sagong M Transl Vis Sci Technol; 2022 Feb; 11(2):39. PubMed ID: 35703566 [TBL] [Abstract][Full Text] [Related]
3. Multi-Plexus Nonperfusion Area Segmentation in Widefield OCT Angiography Using a Deep Convolutional Neural Network. Guo Y; Hormel TT; Gao M; You Q; Wang J; Flaxel CJ; Bailey ST; Hwang TS; Jia Y Transl Vis Sci Technol; 2024 Jul; 13(7):15. PubMed ID: 39023443 [TBL] [Abstract][Full Text] [Related]
4. Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy. Le D; Alam M; Yao CK; Lim JI; Hsieh YT; Chan RVP; Toslak D; Yao X Transl Vis Sci Technol; 2020 Jul; 9(2):35. PubMed ID: 32855839 [TBL] [Abstract][Full Text] [Related]
5. Automated Diagnosis of Optical Coherence Tomography Angiography (OCTA) Based on Machine Learning Techniques. Yasser I; Khalifa F; Abdeltawab H; Ghazal M; Sandhu HS; El-Baz A Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336513 [TBL] [Abstract][Full Text] [Related]
6. Foveal avascular zone segmentation in optical coherence tomography angiography images using a deep learning approach. Mirshahi R; Anvari P; Riazi-Esfahani H; Sardarinia M; Naseripour M; Falavarjani KG Sci Rep; 2021 Jan; 11(1):1031. PubMed ID: 33441825 [TBL] [Abstract][Full Text] [Related]
7. Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography. Heisler M; Karst S; Lo J; Mammo Z; Yu T; Warner S; Maberley D; Beg MF; Navajas EV; Sarunic MV Transl Vis Sci Technol; 2020 Apr; 9(2):20. PubMed ID: 32818081 [TBL] [Abstract][Full Text] [Related]
8. Diagnosing Diabetic Retinopathy in OCTA Images Based on Multilevel Information Fusion Using a Deep Learning Framework. Li Q; Zhu XR; Sun G; Zhang L; Zhu M; Tian T; Guo C; Mazhar S; Yang JK; Li Y Comput Math Methods Med; 2022; 2022():4316507. PubMed ID: 35966243 [TBL] [Abstract][Full Text] [Related]
9. Identification of diabetic retinopathy classification using machine learning algorithms on clinical data and optical coherence tomography angiography. Li X; Wen X; Shang X; Liu J; Zhang L; Cui Y; Luo X; Zhang G; Xie J; Huang T; Chen Z; Lyu Z; Wu X; Lan Y; Meng Q Eye (Lond); 2024 Oct; 38(14):2813-2821. PubMed ID: 38871934 [TBL] [Abstract][Full Text] [Related]
10. Automated segmentation of ultra-widefield fluorescein angiography of diabetic retinopathy using deep learning. Lee PK; Ra H; Baek J Br J Ophthalmol; 2023 Nov; 107(12):1859-1863. PubMed ID: 36241374 [TBL] [Abstract][Full Text] [Related]
12. A new retinal OCT-angiography diabetic retinopathy dataset for segmentation and DR grading. Ma F; Wang S; Dai C; Qi F; Meng J J Biophotonics; 2023 Nov; 16(11):e202300052. PubMed ID: 37421596 [TBL] [Abstract][Full Text] [Related]
13. Hybrid deep learning models for the screening of Diabetic Macular Edema in optical coherence tomography volumes. RodrÃguez-Miguel A; Arruabarrena C; Allendes G; Olivera M; Zarranz-Ventura J; Teus MA Sci Rep; 2024 Jul; 14(1):17633. PubMed ID: 39085461 [TBL] [Abstract][Full Text] [Related]
14. Interaction Between the Distribution of Diabetic Retinopathy Lesions and the Association of Optical Coherence Tomography Angiography Scans With Diabetic Retinopathy Severity. Ashraf M; Sampani K; Rageh A; Silva PS; Aiello LP; Sun JK JAMA Ophthalmol; 2020 Dec; 138(12):1291-1297. PubMed ID: 33119083 [TBL] [Abstract][Full Text] [Related]
15. Advancing Diabetic Retinopathy Diagnosis: Leveraging Optical Coherence Tomography Imaging with Convolutional Neural Networks. Ahmed HS; Thrishulamurthy CJ Rom J Ophthalmol; 2023; 67(4):398-402. PubMed ID: 38239418 [TBL] [Abstract][Full Text] [Related]
16. Automated Grading of Diabetic Retinopathy with Ultra-Widefield Fluorescein Angiography and Deep Learning. Wang X; Ji Z; Ma X; Zhang Z; Yi Z; Zheng H; Fan W; Chen C J Diabetes Res; 2021; 2021():2611250. PubMed ID: 34541004 [TBL] [Abstract][Full Text] [Related]
17. DcardNet: Diabetic Retinopathy Classification at Multiple Levels Based on Structural and Angiographic Optical Coherence Tomography. Zang P; Gao L; Hormel TT; Wang J; You Q; Hwang TS; Jia Y IEEE Trans Biomed Eng; 2021 Jun; 68(6):1859-1870. PubMed ID: 32986541 [TBL] [Abstract][Full Text] [Related]
18. Automated Quantification of Nonperfusion Areas in 3 Vascular Plexuses With Optical Coherence Tomography Angiography in Eyes of Patients With Diabetes. Hwang TS; Hagag AM; Wang J; Zhang M; Smith A; Wilson DJ; Huang D; Jia Y JAMA Ophthalmol; 2018 Aug; 136(8):929-936. PubMed ID: 29902297 [TBL] [Abstract][Full Text] [Related]
19. Automated multidimensional deep learning platform for referable diabetic retinopathy detection: a multicentre, retrospective study. Zhang G; Lin JW; Wang J; Ji J; Cen LP; Chen W; Xie P; Zheng Y; Xiong Y; Wu H; Li D; Ng TK; Pang CP; Zhang M BMJ Open; 2022 Jul; 12(7):e060155. PubMed ID: 35902186 [TBL] [Abstract][Full Text] [Related]
20. Ultra-Widefield Protocol Enhances Automated Classification of Diabetic Retinopathy Severity with OCT Angiography. Wang F; Saraf SS; Zhang Q; Wang RK; Rezaei KA Ophthalmol Retina; 2020 Apr; 4(4):415-424. PubMed ID: 31982390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]