These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 34837166)
1. In Silico Analysis of Bacteriocins from Lactic Acid Bacteria Against SARS-CoV-2. Erol I; Kotil SE; Fidan O; Yetiman AE; Durdagi S; Ortakci F Probiotics Antimicrob Proteins; 2023 Feb; 15(1):17-29. PubMed ID: 34837166 [TBL] [Abstract][Full Text] [Related]
2. Exploring the binding capacity of lactic acid bacteria derived bacteriocins against RBD of SARS-CoV-2 Omicron variant by molecular simulations. Erol I; Kotil SE; Ortakci F; Durdagi S J Biomol Struct Dyn; 2023 Dec; 41(20):10774-10784. PubMed ID: 36591650 [TBL] [Abstract][Full Text] [Related]
3. In silico evaluation of food-derived carotenoids against SARS-CoV-2 drug targets: Crocin is a promising dietary supplement candidate for COVID-19. Mujwar S; Sun L; Fidan O J Food Biochem; 2022 Sep; 46(9):e14219. PubMed ID: 35545850 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for the mechanism of interaction of SARS-CoV-2 B.1.640.2 variant RBD with the host receptors hACE2 and GRP78. Shafiq A; Khalid U; Abdur Rehman U; Abdullah Almuqri E; Muddassir M; Ahmad S; Khan MI; Khan A; Wei DQ J Biomol Struct Dyn; 2024; 42(4):2034-2042. PubMed ID: 37286365 [TBL] [Abstract][Full Text] [Related]
5. Tetracycline as an inhibitor to the SARS-CoV-2. Zhao TY; Patankar NA J Cell Biochem; 2021 Jul; 122(7):752-759. PubMed ID: 33619758 [TBL] [Abstract][Full Text] [Related]
6. Structure-based virtual screening and molecular docking of drugs against the SARS-CoV-2 spike protein-ACE2 receptor complex. Ahmad I; Ali M; Ali R; Nawaz N; G Patching S Pak J Pharm Sci; 2022 Nov; 35(6):1531-1538. PubMed ID: 36789812 [TBL] [Abstract][Full Text] [Related]
7. Inhibitory mechanism of clioquinol and its derivatives at the exopeptidase site of human angiotensin-converting enzyme-2 and receptor binding domain of SARS-CoV-2 viral spike. Kehinde IA; Egbeyemi A; Kaur M; Onyenaka C; Adebusuyi T; Olaleye OA J Biomol Struct Dyn; 2023 Apr; 41(7):2992-3001. PubMed ID: 35220925 [TBL] [Abstract][Full Text] [Related]
8. The interaction of the bioflavonoids with five SARS-CoV-2 proteins targets: An in silico study. Mishra GP; Bhadane RN; Panigrahi D; Amawi HA; Asbhy CR; Tiwari AK Comput Biol Med; 2021 Jul; 134():104464. PubMed ID: 34020130 [TBL] [Abstract][Full Text] [Related]
9. Pharmacoinformatic approach to identify potential phytochemicals against SARS-CoV-2 spike receptor-binding domain in native and variants of concern. Chinnadurai RK; Ponne S; Chitra L; Kumar R; Thayumanavan P; Subramanian B Mol Divers; 2023 Dec; 27(6):2741-2766. PubMed ID: 36547813 [TBL] [Abstract][Full Text] [Related]
10. Pandey AK; Verma S Drug Dev Ind Pharm; 2022 Oct; 48(10):539-551. PubMed ID: 36250723 [TBL] [Abstract][Full Text] [Related]
11. Urtica dioica agglutinin (UDA) as a potential candidate for inhibition of SARS-CoV-2 Omicron variants: In silico prediction and experimental validation. Sabzian-Molaei F; Hosseini S; Alipour A; Ghaderi H; Fotouhi-Chahouki F; Hadi A; Shahsavarani H Phytomedicine; 2023 Mar; 111():154648. PubMed ID: 36681052 [TBL] [Abstract][Full Text] [Related]
12. Drug repurposing for identification of potential inhibitors against SARS-CoV-2 spike receptor-binding domain: An Behera SK; Mahapatra N; Tripathy CS; Pati S Indian J Med Res; 2021 Jan & Feb; 153(1 & 2):132-143. PubMed ID: 33818470 [TBL] [Abstract][Full Text] [Related]
13. In Silico Screening of Bioactive Compounds of Representative Seaweeds to Inhibit SARS-CoV-2 ACE2-Bound Omicron B.1.1.529 Spike Protein Trimer. Bharathi M; Sivamaruthi BS; Kesika P; Thangaleela S; Chaiyasut C Mar Drugs; 2022 Feb; 20(2):. PubMed ID: 35200677 [TBL] [Abstract][Full Text] [Related]
14. Mutational analysis of SARS-CoV-2 ORF6-KPNA2 binding interface and identification of potent small molecule inhibitors to recuse the host immune system. Suleman M; Said A; Khan H; Rehman SU; Alshammari A; Crovella S; Yassine HM Front Immunol; 2023; 14():1266776. PubMed ID: 38283360 [TBL] [Abstract][Full Text] [Related]
15. Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations. Lazniewski M; Dermawan D; Hidayat S; Muchtaridi M; Dawson WK; Plewczynski D Methods; 2022 Jul; 203():498-510. PubMed ID: 35167916 [TBL] [Abstract][Full Text] [Related]
16. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306 [TBL] [Abstract][Full Text] [Related]
17. Impact of E484Q and L452R Mutations on Structure and Binding Behavior of SARS-CoV-2 B.1.617.1 Using Deep Learning AlphaFold2, Molecular Docking and Dynamics Simulation. Jiao Y; Xing Y; Sun Y Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511322 [TBL] [Abstract][Full Text] [Related]
18. Computational screening of natural products to identify potential inhibitors for human neuropilin-1 (NRP1) receptor to abrogate the binding of SARS-CoV-2 and host cell. Karkashan A; Attar R J Biomol Struct Dyn; 2023 Nov; 41(19):9987-9996. PubMed ID: 36437796 [TBL] [Abstract][Full Text] [Related]
19. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Fantini J; Chahinian H; Yahi N Int J Antimicrob Agents; 2020 Aug; 56(2):106020. PubMed ID: 32405156 [TBL] [Abstract][Full Text] [Related]
20. A Novel Therapeutic Peptide Blocks SARS-CoV-2 Spike Protein Binding with Host Cell ACE2 Receptor. Rajpoot S; Ohishi T; Kumar A; Pan Q; Banerjee S; Zhang KYJ; Baig MS Drugs R D; 2021 Sep; 21(3):273-283. PubMed ID: 34324175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]